三條直線兩兩垂直,現(xiàn)有一條直線與其中兩條都成60°,則此直線與另外一條直線所成角為
 
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:如圖所示,OA,OB,OC三條直線兩兩垂直,OP與兩條直線OB,OC都成60°.過點(diǎn)P作PD⊥平面OBC,垂足為點(diǎn)D.可得點(diǎn)D在∠BOC的平分線OM上,連接BD,CD.不妨取OA=OB=OC=2,分別在Rt△OPD中,在△OBD與△OBP中,利用勾股定理和余弦定理,可得
OD
OP
=
2
2
.于是∠POD=45°.即可得出∠AOP.
解答: 解:如圖所示,
OA,OB,OC三條直線兩兩垂直,OP與兩條直線OB,OC都成60°.
過點(diǎn)P作PD⊥平面OBC,垂足為點(diǎn)D.則點(diǎn)D在∠BOC的平分線OM上,
連接BD,CD.
不妨取OA=OB=OC=2,
在Rt△OPD中,由勾股定理可得PD2=OP2-OD2
在△OBD與△OBP中,由余弦定理可得:
BD2=OB2+OD2-2OB•OD•cos45°=22+OD2-4OD×
2
2
=4+OD2-2
2
OD
,
PB2=OB2+OP2-2OB•OP•cos60°=4+OP2-2OP.
在Rt△BDP中,由勾股定理可得:PB2=BD2+PD2
∴4+OP2-2OP=4+OD2-2
2
OD
+OP2-OD2,
化為
OD
OP
=
2
2

∴∠POD=45°.
∴∠AOP=45°.
即直線OP與另外一條直線OA所成角為45°.
點(diǎn)評(píng):本題考查了異面直線所成的角、線面垂直的性質(zhì)、余弦定理和勾股定理,考查了輔助線的作法,考查了推理能力和計(jì)算能力,考查了空間想象能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1+i(i是虛數(shù)單位),則
4
z
-z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)y=f(x)過點(diǎn)(2,
2
),則f(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{
1
n2+n
}依次按第一個(gè)括號(hào)一個(gè)數(shù),第二個(gè)括號(hào)兩個(gè)數(shù),第三個(gè)括號(hào)三個(gè)數(shù),第四個(gè)括號(hào)四個(gè)數(shù),…按此規(guī)律下去,即(
1
2
),(
1
6
,
1
12
),(
1
20
,
1
30
,
1
42
),(
1
56
,
1
72
,
1
90
,
1
110
),則第6個(gè)括號(hào)內(nèi)各數(shù)字之和為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�