已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若在區(qū)間上的最小值為,其中是自然對(duì)數(shù)的底數(shù),
求實(shí)數(shù)的取值范圍;
(Ⅰ)(Ⅱ).
解析試題分析:
解題思路:(Ⅰ)求導(dǎo),利用導(dǎo)數(shù)的幾何意義求解;(Ⅱ)求導(dǎo),討論的取值范圍求函數(shù)的最值.
規(guī)律總結(jié):(1)導(dǎo)數(shù)的幾何意義求切線方程:;(2)求函數(shù)最值的步驟:①求導(dǎo)函數(shù);②求極值;③比較極值與端點(diǎn)值,得出最值.
試題解析:(Ⅰ)當(dāng)時(shí), ,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/87/8/o1pyd3.png" style="vertical-align:middle;" />.所以切線方程是
(Ⅱ)函數(shù)的定義域是
當(dāng)時(shí),
令得
當(dāng)時(shí),所以在上的最小值是,滿足條件,于是;
②當(dāng),即時(shí),在上的最小
最小值,不合題意;
③當(dāng),即時(shí),在上單調(diào)遞減,所以在上的最小值是
,不合題意.
綜上所述有,.
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.利用導(dǎo)數(shù)研究函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
(1)求曲線在點(diǎn)處的的切線方程;
(2)過(guò)原點(diǎn)作曲線的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某商場(chǎng)預(yù)計(jì)從2013年1月份起的前x個(gè)月,顧客對(duì)某商品的需求總量p(x)(單位:件)與x的關(guān)系近似的滿足,且)。該商品第x月的進(jìn)貨單價(jià)q(x)(單位:元)與x的近似關(guān)系是
(1)寫出這種商品2013年第x月的需求量f(x)(單位:件)與x的函數(shù)關(guān)系式;
(2)該商品每件的售價(jià)為185元,若不計(jì)其他費(fèi)用且每月都能滿足市場(chǎng)需求,試問(wèn)該商場(chǎng)2013年第幾個(gè)月銷售該商品的月利潤(rùn)最大,最大月利潤(rùn)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設(shè),求在上的最大值;
(3)試證明:對(duì),不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與x軸平行.
(1)求k的值及的單調(diào)區(qū)間;
(2)設(shè)其中為的導(dǎo)函數(shù),證明:對(duì)任意,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為-1.
(1)求的值及函數(shù)的極值;(2)證明:當(dāng)時(shí),;
(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)R,函數(shù).
(1)若x=2是函數(shù)y=f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若函數(shù)在區(qū)間[0,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,對(duì),恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若函數(shù)在其定義域內(nèi)的一個(gè)子區(qū)間內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com