一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、
10
3
B、9+4
2
+
5
C、9+3
2
+
5
D、
22
3
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:幾何體是直三棱柱消去一個同底的三棱錐,結(jié)合直觀圖判斷各面的形狀及相關(guān)幾何量的數(shù)據(jù),代入面積公式計算.
解答: 解:由三視圖知:幾何體是直三棱柱消去一個同底的三棱錐,如圖:
三棱柱的高為2,底面為直角邊長為2的直角三角形,
消去的三棱錐的高為1,AB=
1+4
=
5
,
∴幾何體的表面積S=2×2+
1
2
×2×2+
1+2
2
×2+
1+2
2
×2
2
+
1
2
×
4+1
=4+2+3+3
2
=9+3
2
+
5

故選:C.
點評:本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1+
3x
6(1-
1
x
4展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域在R上奇函數(shù)f(x)滿足f(x+
5
2
)=-f(x),f(1)>-1,f(4)=loga2(a>0且a≠1),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是(  )
A、若m⊥n,n?α,則m⊥α
B、若m∥α,α∥β,則m∥β
C、若m⊥α,n∥m,則n⊥α
D、若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的n=5,則輸入整數(shù)P的最小值是( 。
A、7B、8C、15D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-1,1]內(nèi)隨機(jī)取兩個實數(shù)x,y,則滿足y≥x-1的概率是( 。
A、
1
8
B、
1
9
C、
8
9
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為零的等差數(shù)列{an}的首項是公差的4倍,若am是a1和a2m的等比例中項,則m=( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-
1
2
<x<2},B={x|-1≤x≤1},則A∩B等于( 。
A、{x|1≤x<2}
B、{x|x<2}
C、{x|-1≤x<2}
D、{x|-
1
2
<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R函數(shù)f(x)滿足f(x)+f(x+2)=0,且f(x-1)為奇函數(shù),現(xiàn)有以下三種敘述:
(1)8是函數(shù)f(x)的一個周期;
(2)f(x)的圖象關(guān)于點(3,0)對稱;
(3)f(x)是偶函數(shù).
其中正確的是(  )
A、(2)(3)
B、(1)(2)
C、(1)(3)
D、(1)(2)(3)

查看答案和解析>>

同步練習(xí)冊答案