將半徑為R的四個球,兩兩相切地放在桌面上,求上面一個球的球心到桌面的距離.
分析:設(shè)四個球的球心分別為O1、O2、O3、O4,將它們兩兩連結(jié)恰好組成一個正三棱錐,且各棱長均為2R,作O1H⊥面O2O3O4,垂足為H,則O1H為棱錐的高,由此可求上面一個球的球心到桌面的距離.
解答:精英家教網(wǎng)解:設(shè)四個球的球心分別為O1、O2、O3、O4,將它們兩兩連結(jié)恰好組成一個正三棱錐,且各棱長均為2R,作O1H⊥面O2O3O4,垂足為H,則O1H為棱錐的高.
連接O4H,則O4H=
2
3
3
R,
∵O1H⊥面O2O3O4
∴O1H⊥HO4,即∠O1HO4=90°,∴O1H=
2
6
3
R,
則從上面一個球的球心到桌面的距離為(
2
6
3
+1)R.
點評:本題考查點到面的距離的計算,考查學(xué)生分析解決問題的能力,考查學(xué)生轉(zhuǎn)化問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,a,b,c為內(nèi)角A,B,C所對的邊長,r為內(nèi)切圓的半徑,則△ABC的面積S=
1
2
(a+b+c)
•r,將此結(jié)論類比到空間,已知在四面體ABCD中,已知在四面體ABCD中,
S1,S2,S3,S4分別為四個面的面積,r為內(nèi)切球的半徑
S1,S2,S3,S4分別為四個面的面積,r為內(nèi)切球的半徑
,則
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河南省周口市高二下學(xué)期四校第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

在邊長分別為a, b, c的三角形ABC中,其內(nèi)切圓半徑為r,則該三角形面積S=(a+b+c)r,將這一結(jié)論類比到空間,有“若四面體A—BCD的四個面的面積分別為S,S,S,S,內(nèi)切球半徑為r,則四體的體積”為:         .

 

查看答案和解析>>

同步練習(xí)冊答案