如圖,點C、D在線段AB上,且△PCD是等邊三角形.
(Ⅰ)當(dāng)AC,CD,DB滿足怎樣的關(guān)系時,△ACP∽△PDB;
(Ⅱ)當(dāng)△PDB∽△ACP時,試求∠APB的度數(shù).
考點:相似三角形的判定
專題:選作題,立體幾何
分析:(1)利用△ACP∽△PDB的對應(yīng)邊成比例和等邊三角形的性質(zhì)可以找到AC、CD、DB的關(guān)系;
(2)利用相似三角形的性質(zhì)對應(yīng)角相等和等邊三角形的性質(zhì)可以求出∠APB的度數(shù).
解答: 解:(1)當(dāng)CD2=AC•DB時,△ACP∽△PDB,
∵△PCD是等邊三角形,
∴∠PCD=∠PDC=60°,
∴∠ACP=∠PDB=120°,
若CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,
PC
BD
=
AC
PD
,
則根據(jù)相似三角形的判定定理得△ACP∽△PDB;
(2)當(dāng)△ACP∽△PDB時,∠APC=∠PBD
∵∠PDB=120°
∴∠DPB+∠DBP=60°
∴∠APC+∠BPD=60°
∴∠APB=∠CPD+∠APC+∠BPD=120°
即可得∠APB的度數(shù)為120°.
點評:此題是開放性試題,要熟練運用相似三角形的性質(zhì)和等邊三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
x+2
+
4-x
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按要求計算下列問題:
(1)若方程mx2-(1-m)x+m=0有兩個實數(shù)根,則m的取值范圍?
(2)1736(8)轉(zhuǎn)換為六進(jìn)制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小區(qū)想利用一矩形空地ABCD建市民健身廣場,設(shè)計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中AD=60m,AB=40m,且△EFG中,∠EGF=90°,經(jīng)測量得到AE=10m,EF=20m.為保證安全同時考慮美觀,健身廣場周圍準(zhǔn)備加設(shè)一個保護(hù)欄.設(shè)計時經(jīng)過點G作一直線交AB,DF于M,N,從而得到五邊形MBCDN的市民健身廣場,設(shè)DN=x(m).
(1)將五邊形MBCDN的面積y表示為x的函數(shù);
(2)當(dāng)x為何值時,市民健身廣場的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)一動點P到點F(2,0)的距離比它到直線x+3=0的距離少1
(1)求動點P的軌跡方程;
(2)過點F(2,0)作一條傾斜角為α的直線,交拋物線于A(x1,y1),B(x2,y2)兩點,線段AB的中點是M,直線OM的斜率kOM=f(α),求kOM=f(α)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-cosx,sinx),
b
=(cosx,
3
cosx),f(x)=
a
b
,x∈[0,π],則當(dāng)f(x)取最大值時,求
a
,
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
-
2
x2
8的展開式中,
(1)系數(shù)的絕對值最大的項是第幾項?
(2)求二項式系數(shù)最大的項;
(3)求系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an=
2n-1(n為正奇數(shù))
2n-1(n為正偶數(shù))
,則前n項和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項依次為a1=2,a2=22+23,a3=24+25+26,a4=27+28+29+210,…,則它的前n項和Sn=
 

查看答案和解析>>

同步練習(xí)冊答案