如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(c,0),下頂點(diǎn)為A(0,-b),直線AF與橢圓的右準(zhǔn)線交于點(diǎn)B,與橢圓的另一個(gè)交點(diǎn)為點(diǎn)C,若F恰好為線段AB的中點(diǎn).
(1)求橢圓的離心率;
(2)若FC=
2
3
,求橢圓的方程.
分析:(1)依題意,可求得2c=
a2
c
,從而可求得橢圓的離心率;
(2)由(1)可知直線AB的方程為y=x-c,設(shè)C(x0,x0-c),將其代入橢圓方程,可求得x0,利用兩點(diǎn)間的距離公式表示出FC=
2
3
,可求得c,從而可求得橢圓的方程.
解答:解(1)因?yàn)锽在右準(zhǔn)線上,且F恰好為線段AB的中點(diǎn),所以2c=
a2
c
,…(2分)
c2
a2
=
1
2
,所以橢圓的離心率e=
2
2
…(4分)
(2)由(1)知a=
2
c,b=c,所以直線AB的方程為y=x-c,
設(shè)C(x0,x0-c),因?yàn)辄c(diǎn)C在橢圓上,所以
x02
2c2
+
(x0-c)2
c2
=1,…(6分)
x02+2(x0-c)2=2c2,
解得x0=0(舍去),x0=
4
3
c.
所以C為(
4
3
c,
1
3
c),…(8分)
因?yàn)镕C=
2
3
,由兩點(diǎn)距離公式可得(
4
3
c-c)2+(
1
3
c)2=
4
9
,
解得c2=2,所以a=2,b=
2
,
所以此橢圓的方程為
x2
4
+
y2
2
=1.    …(10分)
點(diǎn)評(píng):本題考查橢圓的簡單性質(zhì)(求離心率),考查橢圓的標(biāo)準(zhǔn)方程,著重考查方程思想與化歸思想的綜合應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)C(
3
2
,
3
2
)
且離心率為
6
3
,A、B是長軸的左右兩頂點(diǎn),P為橢圓上意一點(diǎn)(除A,B外),PD⊥x軸于D,若
PQ
QD
,λ∈(-1,0)

(1)試求橢圓的標(biāo)準(zhǔn)方程;
(2)P在C處時(shí),若∠QAB=2∠PAB,試求過Q、A、D三點(diǎn)的圓的方程;
(3)若直線QB與AP交于點(diǎn)H,問是否存在λ,使得線段OH的長為定值,若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭一模)如圖.已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸為AB,過點(diǎn)B的直線l與x軸垂直,橢圓的離心率e=
3
2
,F(xiàn)1為橢圓的左焦點(diǎn)且
AF1
F1B
=1.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長HP到點(diǎn)Q使得HP=PQ.連接AQ并延長交直線l于點(diǎn)M,N為MB的中點(diǎn),判定直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),B為橢圓的上頂點(diǎn)且△BF1F2的周長為4+2
3

(1)求橢圓的方程;
(2)是否存在這樣的直線使得直線l與橢圓交于M,N兩點(diǎn),且橢圓右焦點(diǎn)F2恰為△BMN的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說明由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個(gè)動(dòng)點(diǎn),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A、B分別為橢圓的一個(gè)長軸端點(diǎn)與短軸的端點(diǎn).當(dāng)MF2⊥F1F2時(shí),原點(diǎn)O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關(guān)系式;
(2)當(dāng)點(diǎn)M在橢圓上變化時(shí),求證:∠F1MF2的最大值為
π
2
;
(3)設(shè)圓x2+y2=r2(0<r<b),G是圓上任意一點(diǎn),過G作圓的切線交橢圓于Q1,Q2兩點(diǎn),當(dāng)OQ1⊥OQ2時(shí),求r的值.(用b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(1,
2
2
)
,離心率為
2
2
,左、右焦點(diǎn)分別為F1、F2.點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).設(shè)直線PF1、PF2的斜率分別為k1、k2
(Ⅰ)證明:
1
k1
-
3
k2
=2
;
(Ⅱ)問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案