16.已知函數(shù)f(x)=lnx+$\frac{1-x}{ax}$,其中a>0.
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[2,3]上的最小值.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值.

解答 解:(Ⅰ)f′(x)=$\frac{ax-1}{{ax}^{2}}$(x>0),
a=1時,f′(x)=$\frac{x-1}{{x}^{2}}$,
令f′(x)>0,解得:x>1,
令f′(x)<0,解得:x<1,
∴f(x)在(0,1)遞減,在(1,+∞)遞增;
(Ⅱ)①a≥$\frac{1}{2}$時,f′(x)=$\frac{ax-1}{{ax}^{2}}$≥0在[2,3]恒成立,
f(x)在[2,3]遞增,
∴f(x)的最小值是f(2)=ln2-$\frac{1}{2a}$;
②$\frac{1}{3}$<a<$\frac{1}{2}$時,令f′(x)>0,解得:$\frac{1}{a}$<x<3,
令f′(x)<0,解得:2<x<$\frac{1}{a}$,
∴f(x)在[2,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,3]遞增,
∴f(x)的最小值是f($\frac{1}{a}$)=ln$\frac{1}{a}$+1-$\frac{1}{a}$;
③0<a≤$\frac{1}{3}$時,f′(x)≤0在[2,3]恒成立,
f(x)在[2,3]遞減,
∴f(x)的最小值是f(3)=ln3-$\frac{2}{3a}$;
綜上,a≥$\frac{1}{2}$時,f(x)的最小值是f(2)=ln2-$\frac{1}{2a}$;
$\frac{1}{3}$<a<$\frac{1}{2}$時,f(x)的最小值是f($\frac{1}{a}$)=ln$\frac{1}{a}$+1-$\frac{1}{a}$;
0<a≤$\frac{1}{3}$時,f(x)的最小值是f(3)=ln3-$\frac{2}{3a}$.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知在四棱錐P-ABCD中,底面ABCD為菱形且∠ADC=120°,E,F(xiàn)分別是AD,PB的中點(diǎn)且PD=AD.
(1)求證:EF∥平面PCD;
(2)若∠PDA=60°,求證:EF⊥BC;
(3)若PD⊥平面ABCD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x1>x2>x3,若不等式$\frac{1}{{{x_1}-{x_2}}}+\frac{2}{{{x_2}-x{\;}_3}}≥\frac{m}{{{x_1}-{x_3}}}$恒成立,則實(shí)數(shù)m的最大值為(  )
A.9B.7C.3+2$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx+$\frac{1}{2}$x2-(1+a)x.
(1)當(dāng)a>1時,求函數(shù)f(x)的極值;
(2)若f(x)≥0對定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=aln(x+1)-$\frac{x}{x+1}$與函數(shù)g(x)=ln(1-x)-$\frac{x}{x-1}$的圖象關(guān)于y軸對稱.
(Ⅰ)求a的值,并求函數(shù)f(x)的最小值;
(II)是否存在點(diǎn)M(0,-1)的直線與函數(shù)y=f (x)的圖象相切?若存在,滿足條件的切線有多少條?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,則f(lg2016)+f(lg$\frac{1}{2016}$)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表(每行比上一行多一個數(shù)),設(shè)aij(i,j∈N+)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個數(shù),如a42=8,若aij=2010,則i,j的值的和為( 。
A.75B.76C.77D.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖是一幾何體的直觀圖、正視圖、側(cè)視圖、俯視圖.
(1)若F為PD的中點(diǎn),求證:AF⊥平面PCD;
(2)證明:BD∥平面PEC;
(3)求二面角E-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)系方程是$ρ=\frac{6}{{\sqrt{4+5{{sin}^2}θ}}}$,正方形ABCD的頂點(diǎn)都在C1上,且A,B,C,D依逆時針次序排列,點(diǎn)A的極坐標(biāo)為$(2,\frac{π}{6})$.
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為C2上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的最大值.

查看答案和解析>>

同步練習(xí)冊答案