分析 (I)利用等差數(shù)列的求和公式及其通項公式即可得出.
(II)通過分類討論,利用等差數(shù)列與等比數(shù)列的求和公式即可得出.
解答 解:(Ⅰ)因為{an}為等差數(shù)列,
所以$\left\{\begin{array}{l}{S_4}=4{a_1}+\frac{4×3}{2}d=24\\{S_7}=7{a_1}+\frac{7×6}{2}d=63\end{array}\right.⇒\left\{\begin{array}{l}{a_1}=3\\ d=2\end{array}\right.⇒{a_n}=2n+1$.
(Ⅱ)∵${b_n}={2^{a_n}}+{({-1})^n}•{a_n}={2^{2n+1}}+{({-1})^n}•({2n+1})=2×{4^n}+{({-1})^n}•({2n+1})$
∴${T_n}=2({{4^1}+{4^2}+…+{4^n}})+[{-3+5-7+9-…+{{({-1})}^n}({2n+1})}]=\frac{{8({{4^n}-1})}}{3}+{G_n}$,
當n=2k(k∈N*)時,${G_n}=2×\frac{n}{2}=n$,∴${T_n}=\frac{{8({{4^n}-1})}}{3}+n$
當n=2k-1(k∈N*)時,${G_n}=2×\frac{n-1}{2}-({2n+1})=-n-2$,
∴${T_n}=\frac{{8({{4^n}-1})}}{3}-n-2$,∴${T_n}=\left\{\begin{array}{l}\frac{{8({{4^n}-1})}}{3}+n({n=2k,k∈{N^*}})\\ \frac{{8({{4^n}-1})}}{3}-n-2({n=2k-1,k∈{N^*}})\end{array}\right.$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{1}{64},1]$ | B. | $[\frac{1}{8},1]$ | C. | $(\frac{1}{64},1)$ | D. | $(\frac{1}{8},1)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{5}{6}$ | C. | $1-\frac{π}{6}$ | D. | $1-\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 32 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分條件 | |
B. | 已知命題p:?x∈R,使2x>3x;命題q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,則p∧(¬q)是真命題 | |
C. | 命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0或y≠0” | |
D. | 從勻速傳遞的生產(chǎn)流水線上,質(zhì)檢員每隔5分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這是分成抽樣 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
組別 | PM2.5濃度 (微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com