定義在R上的函數(shù)f(x+2)+f(x)=0,且y=f(x-1)是奇函數(shù),給出下列命題:①函數(shù)y=f(x)的最小正周期是2;②函數(shù)y=f(x)的圖象關于點(-1,0)對稱;③函數(shù)y=f(x)的圖象關于y軸對稱.其中真命題是 (填入命題的編號).
【答案】分析:由f(x+2)+f(x)=0可得f(x+4)=-f(x+2)=f(x),則該函數(shù)的周期為T=4,又有函數(shù)f(x-1)為奇函數(shù),說明函數(shù)f(x)應該有對稱中心(-1,0),即f(-2-x)=-f(x)符合點對稱的定義從而可求解.
解答:解:由f(x+2)+f(x)=0,即f(x+2)=-f(x)可得f(x+4)=-f(x+2)=f(x),函數(shù)f(x)的周期T=4,所以①錯;
又∵函數(shù)f(x-1)為奇函數(shù),即函數(shù)f(x)向右移一個單位以后關于(0,0)對稱,∴平移之前的圖象應該關于(-1,0)對稱,故②正確;
∵f(x+2)=-f(x)且f(x-1)=y為奇函數(shù),
∴f(x+2)=-f(x),f(-x-1)=-f(x-1)=-f(x+1),
點評:此題考查了函數(shù)的周期定義及利用定義求函數(shù)的周期,還考查了函數(shù)的對稱及與圖象的平移變換,還考查了復合函數(shù)的奇函數(shù)的定義式.,通過抽象函數(shù)中一些主條件的變形,來考查函數(shù)有關性質(zhì),方法往往是緊扣性質(zhì)