【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為,直線l的方程為:
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于、兩點(diǎn)
①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證:為定值
【答案】(Ⅰ);(Ⅱ)(1),(2)定值為
【解析】
試題(1)橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形,可以看作是以長為底邊,高為的等腰三角形,故面積為,從而可以列出等式,又由離心率得及,可解出,從而求出橢圓的方程 (2)直線和橢圓相交,其方程聯(lián)立方程組,消去,可得關(guān)于的二次方程,利用韋達(dá)定理可得,這就是相交弦的中點(diǎn)的橫坐標(biāo),從而求出,把用坐標(biāo)表示出來,借助(1)中的二次方程得出的代入,就可證明出定值
試題解析:(Ⅰ)因?yàn)?/span>滿足,, 2分
,解得,,
則橢圓方程為.
(Ⅱ)(1)設(shè),將代入并化簡得
,
則是上述方程的解
,
因?yàn)?/span>的中點(diǎn)的橫坐標(biāo)為,所以,解得.
(2)由(1),,
,為定值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體中,,E,F,P,Q分別為棱的中點(diǎn),則下列結(jié)論正確的是( )
A.B.平面EFPQ
C.平面EFPQD.直線和所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著計(jì)算機(jī)的出現(xiàn),圖標(biāo)被賦予了新的含義,又有了新的用武之地.在計(jì)算機(jī)應(yīng)用領(lǐng)域,圖標(biāo)成了具有明確指代含義的計(jì)算機(jī)圖形.如圖所示的圖標(biāo)是一種被稱之為“黑白太陽”的圖標(biāo),該圖標(biāo)共分為3部分.第一部分為外部的八個(gè)全等的矩形,每一個(gè)矩形的長為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內(nèi)部的白色區(qū)域.在整個(gè)“黑白太陽”圖標(biāo)中隨機(jī)取一點(diǎn),則此點(diǎn)取自圖標(biāo)第三部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等軸雙曲線:的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),過作一條漸近線的垂線且垂足為,.
(1)求等軸雙曲線的方程;
(2)若過點(diǎn)且方向向量為的直線交雙曲線于、兩點(diǎn),求的值;
(3)假設(shè)過點(diǎn)的動(dòng)直線與雙曲線交于、兩點(diǎn),試問:在軸上是否存在定點(diǎn),使得為常數(shù),若存在,求出的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì)于任意的,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對(duì)房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬元,且每年的能源消耗費(fèi)用(萬元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.
(1)請(qǐng)解釋的實(shí)際意義,并求的表達(dá)式;
(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子商務(wù)平臺(tái)的管理員隨機(jī)抽取了1000位上網(wǎng)購物者,并對(duì)其年齡(在10歲到69歲之間)進(jìn)行了調(diào)查,統(tǒng)計(jì)情況如下表所示.
年齡 | ||||||
人數(shù) | 100 | 150 | 200 | 50 |
已知,,三個(gè)年齡段的上網(wǎng)購物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.
(1)求的值;
(2)若將年齡在內(nèi)的上網(wǎng)購物者定義為“消費(fèi)主力軍”,其他年齡段內(nèi)的上網(wǎng)購物者定義為“消費(fèi)潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取5人,再從這5人中抽取2人,求這2人中至少有一人是消費(fèi)潛力軍的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的短軸長為2,離心率為
(1)求橢圓C的方程
(2)若過點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)GH,設(shè)P為橢圓C上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com