直角坐標(biāo)平面內(nèi),我們把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點稱為整點.現(xiàn)有一系列頂點都為整點的等腰直角三角形△OA1B1,△OA2B2,△OA3B3,…,△OAnBn,…,其中點O是坐標(biāo)原點,直角頂點An的坐標(biāo)為(n,n)(n∈N*,n≥3),點Bn在x軸正半軸上,則第n個等腰直角三角形△OAnBn內(nèi)(不包括邊界)整點的個數(shù)為   
【答案】分析:先列舉后推理的辦法解答,就是滿足題意的整點:△OA1B1、△OA2B2、△OA3B3、△OA4B4、找出規(guī)律,求出△OAnBn內(nèi)整點個數(shù).
解答:解 的頂點分別是(0,0)(1,1)(2,0)
所以很明顯內(nèi)部沒有整點
△OA2B2的頂點分別是(0,0)(2,2)(4,0)
所以很明顯內(nèi)部整點有(2,1)就一個
△OA3B3的頂點分別是(0,0)(3,3)(6,0)
所以很明顯內(nèi)部整點有(2,1)(3,1)(3,2)(4,2)共4個
△OA4B4的頂點分別是(0,0)(4,4)(8,0)
所以很明顯內(nèi)部整點有(2,1)(3,1)(3,2)(4,1)(4,2)(4,3)(5,1)(5,2)(6,1)一共是9個
所以我們能總結(jié)出規(guī)律:整點橫縱坐標(biāo)之和一定小于8,并且縱坐標(biāo)不能為0,也必須小于橫坐標(biāo)
而且很明顯:△OA1B1內(nèi)整點個數(shù)是0=(1-0)2
△OA2B2內(nèi)整點個數(shù)是1=(2-1)2
△OA3B3內(nèi)整點個數(shù)是4=(3-1)2
△OA4B4內(nèi)整點個數(shù)是9=(4-1)2
所以△OAnBn內(nèi)整點個數(shù)是(n-1)2
故答案為:(n-1)2
點評:本題考查二元一次不等式(組)與平面區(qū)域,考查邏輯思維能力,計算能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、直角坐標(biāo)平面內(nèi),我們把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點稱為整點.現(xiàn)有一系列頂點都為整點的等腰直角三角形△OA1B1,△OA2B2,△OA3B3,…,△OAnBn,…,其中點O是坐標(biāo)原點,直角頂點An的坐標(biāo)為(n,n)(n∈N*,n≥3),點Bn在x軸正半軸上,則第n個等腰直角三角形△OAnBn內(nèi)(不包括邊界)整點的個數(shù)為
(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇模擬 題型:填空題

直角坐標(biāo)平面內(nèi),我們把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點稱為整點.現(xiàn)有一系列頂點都為整點的等腰直角三角形△OA1B1,△OA2B2,△OA3B3,…,△OAnBn,…,其中點O是坐標(biāo)原點,直角頂點An的坐標(biāo)為(n,n)(n∈N*,n≥3),點Bn在x軸正半軸上,則第n個等腰直角三角形△OAnBn內(nèi)(不包括邊界)整點的個數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省連云港市東?h高級中學(xué)高三(上)期末數(shù)學(xué)模擬試卷(一)(解析版) 題型:填空題

直角坐標(biāo)平面內(nèi),我們把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點稱為整點.現(xiàn)有一系列頂點都為整點的等腰直角三角形△OA1B1,△OA2B2,△OA3B3,…,△OAnBn,…,其中點O是坐標(biāo)原點,直角頂點An的坐標(biāo)為(n,n)(n∈N*,n≥3),點Bn在x軸正半軸上,則第n個等腰直角三角形△OAnBn內(nèi)(不包括邊界)整點的個數(shù)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年北京市延慶縣高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

直角坐標(biāo)平面內(nèi),我們把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點稱為整點.現(xiàn)有一系列頂點都為整點的等腰直角三角形△OA1B1,△OA2B2,△OA3B3,…,△OAnBn,…,其中點O是坐標(biāo)原點,直角頂點An的坐標(biāo)為(n,n)(n∈N*,n≥3),點Bn在x軸正半軸上,則第n個等腰直角三角形△OAnBn內(nèi)(不包括邊界)整點的個數(shù)為   

查看答案和解析>>

同步練習(xí)冊答案