如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在函數(shù)f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.
(1)判斷下列函數(shù)是不是“保三角形函數(shù)”,并證明你的結(jié)論:
①f(x)=
x
;    ②g(x)=sinx (x∈(0,π)).
(2)若函數(shù)h(x)=lnx (x∈[M,+∞))是保三角形函數(shù),求M的最小值.
分析:(1)任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,我們判斷f(a),f(b),f(c)是否滿足任意兩數(shù)之和大于第三個(gè)數(shù),即任意兩邊之和大于第三邊;
(2)要利用“保三角形函數(shù)”的概念,求M的最小值,首先證明當(dāng)M≥2時(shí),函數(shù)h(x)=lnx (x∈[M,+∞))是保三角形函數(shù),然后證明當(dāng)0<M<2<M<2時(shí),H(X)=LNX (x∈[M,+∞))不是保三角形函數(shù),h(x)=lnx (x∈[M,+∞))不是保三角形函數(shù),從而求出所求.
解答:解:(1)設(shè)0<a≤b≤c,a+b>c,欲證明
a
+
b
c

只需證明 a+b+2
ab
>c
,成立.①是“保三角形函數(shù)”;
a=
π
2
,b=
6
,c=
6
,而sinb+sinc=sina,②不是“保三角形函數(shù)”;
(2)M的最小值為2
(i)首先證明當(dāng)M≥2時(shí),函數(shù)h(x)=lnx (x∈[M,+∞))是保三角形函數(shù).
對任意一個(gè)三角形三邊長a,b,c∈[M,+∞),且a+b>c,b+c>a,c+a>b,
則h(a)=lna,h(b)=lnb,h(c)=lnc.
因?yàn)閍≥2,b≥2,a+b>c,所以(a-1)(b-1)≥1,所以ab≥a+b>c,所以lnab>lnc,
即lna+lnb>lnc.
同理可證明lnb+lnc>lna,lnc+lna>lnb.
所以lna,lnb,lnc是一個(gè)三角形的三邊長.
故函數(shù)h(x)=lnx (x∈[M,+∞),M≥2),是保三角形函數(shù)…13分
(ii)其次證明當(dāng)0<M<2時(shí),H(X)=LNX (x∈[M,+∞))不是保三角形函數(shù),h(x)=lnx (x∈[M,+∞))不是保三角形函數(shù) 
因?yàn)?<M<2,所以M+M=2M>M2,所以M,M,M2是某個(gè)三角形的三條邊長,
而lnM+lnM=2lnM=lnM2,所以lnM,lnM,lnM2不能為某個(gè)三角形的三邊長,所以h(x)=lnx 不是保三角形函數(shù).
所以,當(dāng)M<2時(shí),h(x)=lnx (x∈[M,+∞))不是保三角形函數(shù).
綜上所述:M的最小值為2
點(diǎn)評:要想判斷f(x)為“保三角形函數(shù)”,要經(jīng)過嚴(yán)密的論證說明f(x)滿足“保三角形函數(shù)”的概念,但要判斷f(x)不為“保三角形函數(shù)”,僅須要舉出一個(gè)反例即可,屬于創(chuàng)新題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在函數(shù)f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“Л型函數(shù)”.則下列函數(shù):①f(x)=
x
;②g(x)=sinx,x∈(0,π);③h(x)=lnx,x∈[2,+∞),其中是“Л型函數(shù)”的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=
x
,②f2(x)=x,③f3(x)=x2中,其中
 
是“保三角形函數(shù)”.(填上正確的函數(shù)序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在函數(shù)f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則f(x)均為“V型函數(shù)”.則下列函數(shù):
①f(x)=
x
;  ②g(x)=sinx,x∈(0,π);③h(x)=lnx,x∈[2,+∞),其中是“V型函數(shù)”的序號為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)一個(gè)函數(shù)f(x),如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“三角形函數(shù)”.
(1)判斷f1(x)=
x
,f2(x)=x,f3(x)=x2中,哪些是“三角形函數(shù)”,哪些不是,并說明理由;
(2)如果g(x)是定義在R上的周期函數(shù),且值域?yàn)椋?,+∞),證明g(x)不是“三角形函數(shù)”;
(3)若函數(shù)F(x)=sinx,x∈(0,A),當(dāng)A>
6
時(shí),F(xiàn)(x)不是“三角形函數(shù)”.

查看答案和解析>>

同步練習(xí)冊答案