設(shè)函數(shù)f(x)=2x+p,(p為常數(shù)且p∈R).
(1)若f(3)=5,求f(x)的解析式;
(2)在(1)的條件下,解方程:f-1(x)=2+log2x2
分析:(1)據(jù)題意f(3)=5代入方程,求出p的值,從而求出解析式;
(2)先求出函數(shù)的反函數(shù),然后解對數(shù)方程,注意定義域優(yōu)先原則,從而求出所求.
解答:解:(1)由題設(shè)得23+p=5⇒p=-3,所以f(x)=2x-3;…(2分)
(2)由(1)得f-1(x)=log2(x+3)(x>-3)…(3分)
于是方程log2(x+3)=2+log2x2⇒4x2=x+3⇒x=1或x=-
3
4

經(jīng)檢驗x=1或x=-
3
4
都是原方程的根. …(3分)
點評:本題主要考查了函數(shù)的值,以及反函數(shù)和對數(shù)方程,解題時需注意定義域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、設(shè)函數(shù)f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定實數(shù)a(a≠
12
),設(shè)函數(shù)f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導(dǎo)數(shù)f′(x)的圖象為C1,C1關(guān)于直線y=x對稱的圖象記為C2
(Ⅰ)求函數(shù)y=f′(x)的單調(diào)區(qū)間;
(Ⅱ)對于所有整數(shù)a(a≠-2),C1與C2是否存在縱坐標(biāo)和橫坐標(biāo)都是整數(shù)的公共點?若存在,請求出公共點的坐標(biāo);若不若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(2x+1)(3x+a)
x
為奇函數(shù),則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-2x+m2x+n
(m、n為常數(shù),且m∈R+,n∈R).
(Ⅰ)當(dāng)m=2,n=2時,證明函數(shù)f(x)不是奇函數(shù);
(Ⅱ)若f(x)是奇函數(shù),求出m、n的值,并判斷此時函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案