已知數(shù)列{an}各項均為正數(shù),觀察下面的程序框圖
(1)若d≠0,分別寫出當k=2,k=3時s的表達式.
(2)當輸入a1=d=2,k=100 時,求s的值( 其中2的高次方不用算出).
分析:(1)經(jīng)過分析,程序框圖為當型循環(huán)結構,按照框圖題意分析求出{an}的前n項和即可.
(2)根據(jù)(1)的結論,得到a1d+2a1d2+3a1d3+…+100a1d100,然后錯位相減法求a1d+2a1d2+3a1d3+…+100a1d100的和即得.
解答:解:(1)當k=2時   s=a1d+2a1d2
當k=3 時   s=a1d+2a1d2+3a1d3
(2)∵s=a1d+2a1d2+3a1d3+…+100a1d100
=22+2×23+3×24+4×25+…+100×2101
∴2×s=23+2×24+3×25+4×26+…+100×2101
∴-s=22+23+24+25+…+2101-100×2102
∴-s=2102-4-100×2102
∴s=99×2102+4
點評:本題考查程序框圖,數(shù)列的概念及簡單表示方法,數(shù)列的求和,通過對知識的熟練把握,分別進行求值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}各項均不為0,其前n項和為Sn,且對任意n∈N*都有(1-p)Sn=p-pan(p為大于1的常數(shù)),則an=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•資陽一模)已知數(shù)列{an}各項為正數(shù),前n項和Sn=
1
2
an(an+1)

(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,bn+1=bn+3an,求數(shù)列{bn}的通項公式;
(3)在(2)的條件下,令cn=
3an
2
b
2
n
,數(shù)列{cn}前n項和為Tn,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}各項均不為0,其前n項和為Sn,且對任意n∈N*都有(1-p)Sn=p-pan(p≠±1的常數(shù)),記f(n)=
1+
C
1
n
a1+
C
2
n
a2+…+
C
n
n
an
2nSn

(Ⅰ)求an;
(Ⅱ)求
lim
n→∞
f(n+1)
f(n)
;
(Ⅲ)當p>1時,設bn=
p+1
2p
-
f(n+1)
f(n)
,求數(shù)列{pk+1bkbk+1}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}各項均為正數(shù),滿足n
a
2
n
+(1-n2)a n-n=0

(1)計算a1,a2,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{
an
2n
}
的前n項和Sn

查看答案和解析>>

同步練習冊答案