12.與向量$\overrightarrow{a}$=(4,-3)垂直的單位向量是($\frac{3}{5}$,$\frac{4}{5}$).

分析 根據(jù)相互垂直的兩個向量的數(shù)量積為0便可看出向量(3,4)與$\overrightarrow{a}$垂直,從而將向量(3,4)變成單位向量即可.

解答 解:可看出向量(3,4)⊥(4,-3);
∴與向量$\overrightarrow{a}=(4,-3)$垂直的單位向量為$(\frac{3}{5},\frac{4}{5})$.
故答案為:$(\frac{3}{5},\frac{4}{5})$.

點評 考查相互垂直的兩個向量的數(shù)量積為0,單位向量的概念,以及將一個向量變成單位向量的方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=3sinx•ln(1+x)的部分圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若方程x3-3ax+2=0(a>0)有三個不同的實根,則實數(shù)a的取值范圍為( 。
A.a>0B.0<a<1C.1<a<3D.a>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是兩個不共線的向量,已知向量$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+sinα$\overrightarrow{{e}_{2}}$(-$\frac{π}{2}$<α<$\frac{π}{2}$),$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$-$\frac{5}{4}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三點共線,則函數(shù)f(x)=2cos(x+α)在[0,π)上的值域為( 。
A.[-1,$\frac{1}{2}$]B.[-2,$\sqrt{3}$]C.(-2,1]D.(-1,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}中,a1=1,a2=3,且an+1=an+2an-1(n≥2).
(1)設bn=an+1+λan,是否存在實數(shù)λ,使數(shù)列{bn}為等比數(shù)列?若存在,求出λ的值,若不存在,請說明理由;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.從6名男生和4名女生中,選出3名男生和2名女生,分別擔任五門不同課程的科代表.求不同分配方法的種數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在數(shù)列{an}中,已知a1=3,an=an-1-4.
(1)這個數(shù)列是否是等差數(shù)列?若是,寫出它的公差d.
(2)求出這個數(shù)列的第61項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若函數(shù)f(x)=$\frac{lg(1-{x}^{2})}{|x-2|+a}$奇函數(shù),則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若tanα=3,則f($α+\frac{π}{8}$)的值為(  )
A.-$\frac{3}{5}$B.-$\frac{4}{5}$C.-$\frac{3\sqrt{2}}{5}$D.-$\frac{4\sqrt{2}}{5}$

查看答案和解析>>

同步練習冊答案