17.已知函數(shù)f(x-1)=2x-$\sqrt{x}$,則f(3)=6.

分析 由f(3)=f(4-1),利用函數(shù)f(x-1)=2x-$\sqrt{x}$,能求出結(jié)果.

解答 解:∵函數(shù)f(x-1)=2x-$\sqrt{x}$,
∴f(3)=f(4-1)=2×4-$\sqrt{4}$=6.
故答案為:6.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y=$\frac{1}{4}$x2的焦點(diǎn)坐標(biāo)為( 。
A.(-$\frac{1}{16}$,0)B.($\frac{1}{16}$,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若c=3,C=$\frac{π}{3}$,sinB=2sinA,則a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸.已知曲線C的極坐標(biāo)方程為ρ=8sinθ
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線$\left\{\begin{array}{l}x=t\\ y=t+2\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點(diǎn),求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=sin(2x+φ)的圖象向右平移$\frac{π}{3}$個(gè)單位,與函數(shù)y=sin2x的圖象重合,φ∈(-π,π),則φ=( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.-$\frac{5π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈($\frac{π}{12}$,$\frac{π}{3}$)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{4}$+y2=1,直線m與橢圓交于A、B兩點(diǎn),線段AB的中點(diǎn)為M(1,$\frac{1}{2}$),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在自然界中存在著大量的周期函數(shù),比如聲波.若兩個(gè)聲波隨時(shí)間的變化規(guī)律分別為:y1=3$\sqrt{2}$sin(100πt),y2=3cos(100πt+$\frac{π}{4}$),則這兩個(gè)聲波合成后(即y=y1+y2)的聲波的振幅為( 。
A.$6\sqrt{2}$B.$3+3\sqrt{2}$C.$3\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)$f(x)=\frac{x}{{\sqrt{1+{x^2}}}}$,數(shù)列{an}滿足a1=f(1),an+1=f(an)(n∈N*),則a2017=( 。
A.$\frac{1}{{\sqrt{2016}}}$B.$\frac{1}{{\sqrt{2017}}}$C.$\frac{1}{{\sqrt{2018}}}$D.$\frac{1}{{\sqrt{2019}}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案