設(shè)點(diǎn)A(x0,y0)為拋物線y2=4x上一點(diǎn),點(diǎn)B的坐標(biāo)為(1,0),且|AB|=1,則點(diǎn)A的橫坐標(biāo)x0的值為

[  ]
A.

-2

B.

0

C.

-2或0

D.

-2或2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)是F(1,0),已知橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知Q(x0,y0)為橢圓上任意一點(diǎn),求以Q為切點(diǎn),橢圓的切線方程.
(3)設(shè)點(diǎn)P為直線x=4上一動(dòng)點(diǎn),過(guò)P作橢圓兩條切線PA,PB,求證直線AB過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函數(shù)y=g(x)的零點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè),求實(shí)數(shù)a的范圍.
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn).如果在曲線C上存在點(diǎn)M(x0,y0),使得:①x0=
x1+x2
2
;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)f(x)=存在“中值相依切線”.
試問(wèn):函數(shù)G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-x(a∈R,a≠0),g(x)=1nx.
(1)若函數(shù)y=f(x)與y=g(x)的圖象有兩個(gè)不同的交點(diǎn)M,N,求a的取值范圍;
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)y=g(x)圖象上的兩點(diǎn).平行于AB的切線以 P(x0,y0)為切點(diǎn),求證:x1<x0<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(江西卷)、數(shù)學(xué)(理) 題型:044

設(shè)點(diǎn)P(x0,y0)在直線x=m(y≠±m(xù),0<m<1)上,過(guò)點(diǎn)P作雙曲線x2-y2=1的兩條切線PA、PB,切點(diǎn)為A、B,定點(diǎn)

(1)求證:三點(diǎn)A、M、B共線.

(2)過(guò)點(diǎn)A作直線x-y=0的垂線,垂足為N,試求△AMN的重心G所在曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案