為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2010年進行技術改革.經(jīng)調(diào)查測算,產(chǎn)品當年的產(chǎn)量x萬件與投入技術改革費用m萬元(m≥0)滿足x=3-(k為常數(shù)).如果不搞技術改革,則該產(chǎn)品當年的產(chǎn)量只能是1萬件.已知2010年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.由于市場行情較好,廠家生產(chǎn)的產(chǎn)品均能銷售出去.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品生產(chǎn)成本的1.5倍(生產(chǎn)成本包括固定投入和再投入兩部分資金).
(1)將2010年該產(chǎn)品的利潤y萬元(利潤=銷售金額-生產(chǎn)成本-技術改革費用)表示為技術改革費用m萬元的函數(shù);
(2)該企業(yè)2010年的技術改革費用投入多少萬元時,廠家的利潤最大?
【答案】分析:(1)首先根據(jù)題意令m=0代入x=3-求出常量k,這樣就得出了x與m的關系式,然后根據(jù)2010年固定收入加再投入資金求出總成本為8+16x,再除以2010的件數(shù)就可以得出2010年每件的成本,而每件的銷售價格是成本的1.5倍,從而得出了每件產(chǎn)品的銷售價格為(元),然后用每件的銷售單價×銷售數(shù)量得到總銷售額為x•().最后利用利潤=銷售金額-生產(chǎn)成本-技術改革費用得出利潤y的關系式.
(2)根據(jù)a+b當且僅當a=b時取等號的方法求出y的最大值時m的取值即可.
解答:解:(1)由題意可知,當m=0時,x=1(萬件)∴
每件產(chǎn)品的銷售價格為(元),
∴2010年的利潤=

(2)∵m≥0,∴,
∴y≤29-8=21.
=m+1,即m=3,ymax=21.
∴該企業(yè)2010年的技術改革費用投入3萬元時,廠家的利潤最大.
點評:本題主要考查學生根據(jù)實際問題列出函數(shù)解析式的能力,以及求函數(shù)最值的問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2010年進行技術改革.經(jīng)調(diào)查測算,產(chǎn)品當年的產(chǎn)量x萬件與投入技術改革費用m萬元(m≥0)滿足x=3-
km+1
(k為常數(shù)).如果不搞技術改革,則該產(chǎn)品當年的產(chǎn)量只能是1萬件.已知2010年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.由于市場行情較好,廠家生產(chǎn)的產(chǎn)品均能銷售出去.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品生產(chǎn)成本的1.5倍(生產(chǎn)成本包括固定投入和再投入兩部分資金).
(1)將2010年該產(chǎn)品的利潤y萬元(利潤=銷售金額-生產(chǎn)成本-技術改革費用)表示為技術改革費用m萬元的函數(shù);
(2)該企業(yè)2010年的技術改革費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2013年進行技術改革,經(jīng)調(diào)查測算,產(chǎn)品當年的產(chǎn)量x萬件與投入技術改革費用m萬元(m≥0)滿足x=3-
km+1
(k為常數(shù)).如果不搞技術改革,則該產(chǎn)品當年的產(chǎn)量只能是1萬件.已知2013年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.由于市場行情較好,廠家生產(chǎn)均能銷售出去,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品生產(chǎn)成本的1.5倍(生產(chǎn)成本包括固定投入和再投入兩部分資金)
(1)試確定k的值,并將2013年該產(chǎn)品的利潤y萬元表示為技術改革費用m萬元的函數(shù)(利潤=銷售金額-生產(chǎn)成本-技術改革費用);
(2)該企業(yè)2013年的技術改革費用投入多少萬元時,廠家的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省內(nèi)江市高一(下)期末數(shù)學試卷(文科)(解析版) 題型:解答題

為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2013年進行技術改革,經(jīng)調(diào)查測算,產(chǎn)品當年的產(chǎn)量x萬件與投入技術改革費用m萬元(m≥0)滿足x=3-(k為常數(shù)).如果不搞技術改革,則該產(chǎn)品當年的產(chǎn)量只能是1萬件.已知2013年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.由于市場行情較好,廠家生產(chǎn)均能銷售出去,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品生產(chǎn)成本的1.5倍(生產(chǎn)成本包括固定投入和再投入兩部分資金)
(1)試確定k的值,并將2013年該產(chǎn)品的利潤y萬元表示為技術改革費用m萬元的函數(shù)(利潤=銷售金額-生產(chǎn)成本-技術改革費用);
(2)該企業(yè)2013年的技術改革費用投入多少萬元時,廠家的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省鄂州二中高三(上)11月段考數(shù)學試卷(理科)(解析版) 題型:解答題

為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2010年進行技術改革.經(jīng)調(diào)查測算,產(chǎn)品當年的產(chǎn)量x萬件與投入技術改革費用m萬元(m≥0)滿足x=3-(k為常數(shù)).如果不搞技術改革,則該產(chǎn)品當年的產(chǎn)量只能是1萬件.已知2010年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.由于市場行情較好,廠家生產(chǎn)的產(chǎn)品均能銷售出去.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品生產(chǎn)成本的1.5倍(生產(chǎn)成本包括固定投入和再投入兩部分資金).
(1)將2010年該產(chǎn)品的利潤y萬元(利潤=銷售金額-生產(chǎn)成本-技術改革費用)表示為技術改革費用m萬元的函數(shù);
(2)該企業(yè)2010年的技術改革費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

同步練習冊答案