精英家教網 > 高中數學 > 題目詳情
雙曲線
x2
3
-y2
=1的右焦點坐標為( 。
分析:利用雙曲線的標準方程確定幾何量,即可得到雙曲線的右焦點的坐標.
解答:解:∵雙曲線的方程為
x2
3
-y2
=1
∴a2=3,b2=1
∴c2=a2+b2=4
∴c=2
∴雙曲線
x2
3
-y2
=1的右焦點坐標為(2,0)
故選A.
點評:本題考查雙曲線的標準方程與幾何性質,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

P是雙曲線
x23
-y2=1
的右支上一動點,F是雙曲線的右焦點,已知A(3,1),則|PA|+|PF|的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已如點M(1,0)及雙曲線
x2
3
-y2=1
的右支上兩動點A,B,當∠AMB最大時,它的余弦值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
3
-y2=1
的左右焦點分別為F1F2,過F1且傾斜角為60°的直線l與雙曲線交于M,N兩點,則△MNF2的內切圓半徑為
3
3
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

若拋物線y2=-2px(p>0)的焦點與雙曲線
x23
-y2=1
的左焦點重合,則p的值
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

過點M(3,1)作直線交雙曲線
x23
-y2=1
于A、B兩點,且點M恰為線段AB中點,則直線AB的方程為
 

查看答案和解析>>

同步練習冊答案