已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時(shí),f(x)=x2-4x,則不等式f(x)<x的解集用區(qū)間表示為
(-∞,-5)∪(0,5)
(-∞,-5)∪(0,5)
分析:作出x大于0時(shí),f(x)的圖象,根據(jù)f(x)為定義在R上的奇函數(shù),利用奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)作出x小于0的圖象,所求不等式即為函數(shù)y=f(x)圖象在y=x下方,利用圖形即可求出解集.
解答:解:作出f(x)=x2-4x(x>0)的圖象,如圖所示,
∵f(x)是定義在R上的奇函數(shù),
∴利用奇函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng)作出x<0的圖象,
不等式f(x)>x表示函數(shù)y=f(x)圖象在y=x下方,
∵f(x)圖象與y=x圖象交于P(5,5),Q(-5,-5),
則由圖象可得不等式f(x)<x的解集為(-∞,-5)∪(0,5)
故答案為:
(-∞,-5)∪(0,5)
點(diǎn)評(píng):此題考查了一元二次不等式的解法,利用了數(shù)形結(jié)合的思想,靈活運(yùn)用數(shù)形結(jié)合思想是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿(mǎn)足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對(duì)所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案