已知函數(shù)f(x)是偶函數(shù),且x≤0時(shí),f(x)=
1+x1-x
,求
(1)f(5)的值;
(2)f(x)=0時(shí)x的值;
(3)當(dāng)x>0時(shí)f(x)的解析式.
分析:(1)由題意可得,f(5)=f(-5),代入即可求解
(2)當(dāng)x≤0時(shí),f(x)=0可求x,然后結(jié)合f(-x)=f(x)即可求解滿足條件的x
(3)當(dāng)x>0時(shí),f(x)=f(-x)=
1-x
1+x
,即可求解.
解答:解:(1)f(5)=f(-5)=
1-5
1+5
=-
4
6
=-
2
3

(2)當(dāng)x≤0時(shí),f(x)=0即為
1+x
1-x
=0,
∴x=-1,又f(1)=f(-1),
∴f(x)=0時(shí)x=±1.
(3)當(dāng)x>0時(shí),f(x)=f(-x)=
1-x
1+x
,
∴x>0時(shí),f(x)=
1-x
1+x
點(diǎn)評(píng):本題主要考查了利用偶函數(shù)的定義求解函數(shù)的函數(shù)值及函數(shù)的解析式,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對(duì)于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時(shí),有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù),且f(1)=1,g(1)=2,
(1)求函數(shù)f(x)和g(x);
(2)設(shè)h(x)=f(x)+g(x),判斷函數(shù)h(x)的奇偶性;
(3)求函數(shù)h(x)在(0,
2
]
上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù),且f(1)=1,g(1)=2.
(1)求函數(shù)f(x)和g(x);    
(2)判斷函數(shù)f(x)+g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對(duì)于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時(shí),有f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù),且f(1)=1,g(1)=2.
(1)求函數(shù)f(x)和g(x);
(2)判斷函數(shù)f(x)+g(x)的奇偶性.
(3)求函數(shù)f(x)+g(x)在(0,
2
]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案