【題目】已知點(diǎn)的序列,其中.是線段的中點(diǎn),是線段的中點(diǎn),……,是線段的中點(diǎn),…)

1)寫出之間的關(guān)系;

2)設(shè),計(jì)算,由此推測數(shù)列的通項(xiàng)公式,并且加以證明;

3)求.

【答案】1;(2,證明見解析;(3.

【解析】

1)根據(jù)中點(diǎn)坐標(biāo)公式,求得之間的關(guān)系.

2)根據(jù),猜想,然后利用數(shù)學(xué)歸納法進(jìn)行證明.

3)由(2)利用累加法求得的表達(dá)式并根據(jù)等比數(shù)列前項(xiàng)和公式求和,進(jìn)而求得.

1)依題意,點(diǎn)的序列,其中.是線段的中點(diǎn),是線段的中點(diǎn),……,是線段的中點(diǎn),…).由中點(diǎn)坐標(biāo)公式得:.

2.

猜想,.

用數(shù)學(xué)歸納法證明:

①當(dāng)時(shí),,等式成立.

②假設(shè)當(dāng)時(shí)等式成立,即,

那么當(dāng)時(shí),

.

所以當(dāng)時(shí)等式也成立,根據(jù)①和②,對(duì),等式都成立.

3)由,得

,,…,.

由于,以上各式相加,得.

是以為公比的等比數(shù)列,.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)若等比數(shù)列的前n項(xiàng)和為,求實(shí)數(shù)a的值;

2)對(duì)于非常數(shù)數(shù)列有下面的結(jié)論:若數(shù)列為等比數(shù)列,則該數(shù)列的前n項(xiàng)和為為常數(shù)).寫出它的逆命題并判斷真假,請(qǐng)說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20202月,全國掀起了“停課不停學(xué)”的熱潮,各地教師通過網(wǎng)絡(luò)直播、微課推送等多種方式來指導(dǎo)學(xué)生線上學(xué)習(xí).為了調(diào)查學(xué)生對(duì)網(wǎng)絡(luò)課程的熱愛程度,研究人員隨機(jī)調(diào)查了相同數(shù)量的男、女學(xué)生,發(fā)現(xiàn)有的男生喜歡網(wǎng)絡(luò)課程,有的女生不喜歡網(wǎng)絡(luò)課程,且有的把握但沒有的把握認(rèn)為是否喜歡網(wǎng)絡(luò)課程與性別有關(guān),則被調(diào)查的男、女學(xué)生總數(shù)量可能為(

附:,其中.

k

A.130B.190C.240D.250

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,是橢圓上一點(diǎn).

1)求橢圓的方程;

2)若直線的斜率為,且直線交橢圓、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請(qǐng)求出此定值,如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).是曲線上的動(dòng)點(diǎn),將線段點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(I)求曲線,的極坐標(biāo)方程;

(II)在(I)的條件下,若射線與曲線分別交于兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把分別寫有1,2,3,4,5的五張卡片全部分給甲、乙、丙三個(gè)人,每人至少一張,且若分得的卡片超過一張,則必須是連號(hào),那么不同的分法種數(shù)為______用數(shù)字作答

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)工廠在某年連續(xù)10個(gè)月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通過畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;

(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;

②通過建立的y關(guān)于x的回歸方程,估計(jì)某月產(chǎn)量為1.98萬件時(shí),此時(shí)產(chǎn)品的總成本為多少萬元?

(均精確到0.001)

附注:①參考數(shù)據(jù):

,

②參考公式:相關(guān)系數(shù),

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的直角坐標(biāo)方程為.

1)求的極坐標(biāo)方程;

2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案