已知為橢圓上的三個(gè)點(diǎn),為坐標(biāo)原點(diǎn).

1)若所在的直線方程為,求的長(zhǎng);

2)設(shè)為線段上一點(diǎn),且,當(dāng)中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.

 

1;2定值為

【解析】

試題分析:1因?yàn)榍?/span>所在的直線方程為與橢圓方程相交所得的弦長(zhǎng).一般是通過(guò)聯(lián)立兩方程,消去y,得到關(guān)于x的一元二次方程,可以解得兩個(gè)交點(diǎn)的坐標(biāo)的橫坐標(biāo),確定點(diǎn)的坐標(biāo),從而根據(jù)兩點(diǎn)的距離公式求出弦長(zhǎng).

2直線與圓的位置關(guān)系,首先考慮直線的斜率是否存在,做好分類的工作.若當(dāng)斜率存在時(shí),通過(guò)聯(lián)立方程,應(yīng)用韋達(dá)定理知識(shí),求出弦長(zhǎng),利用點(diǎn)到直線的距離公式求出三角形的高的長(zhǎng).從而寫(xiě)出三角形的面積(含斜率的等式).再根據(jù)的關(guān)系求出點(diǎn)P的坐標(biāo),帶到橢圓方程中,即可求出含斜率的一個(gè)等式,從而可得結(jié)論.

試題解析:1

解得,

所以兩點(diǎn)的坐標(biāo)為所以.

2)①若是橢圓的右頂點(diǎn)(左頂點(diǎn)一樣),則,

因?yàn)?/span>,在線段上,所以,求得,

所以的面積等于.

②若B不是橢圓的左、右頂點(diǎn),設(shè),,

,

所以,的中點(diǎn)的坐標(biāo)為,

所以,代入橢圓方程,化簡(jiǎn)得.

計(jì)算.

因?yàn)辄c(diǎn)的距離

所以,的面積.

綜上,面積為常數(shù).

考點(diǎn):1.直線與橢圓的位置關(guān)系.2.弦長(zhǎng)公式.3.點(diǎn)到直線的距離公式.4.向量的知識(shí).5.整體的解題思想.6.過(guò)定點(diǎn)的問(wèn)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆吉林省吉林市高二上學(xué)期期末理數(shù)學(xué)試卷(解析版) 題型:選擇題

已知直線與雙曲線,有如下信息:聯(lián)立方程組:, 消去后得到方程,分類討論:(1)當(dāng)時(shí),該方程恒有一解;(2)當(dāng)時(shí),恒成立。在滿足所提供信息的前提下,雙曲線離心率的取值范圍是

A B

C D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆北京海淀區(qū)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

已知拋物線,為坐標(biāo)原點(diǎn),的焦點(diǎn),上一點(diǎn). 是等腰三角形,則 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆北京海淀區(qū)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知拋物線為坐標(biāo)原點(diǎn),的焦點(diǎn),上一點(diǎn). 是等腰三角形,則 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆北京海淀區(qū)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的導(dǎo)函數(shù)為,那么“”是“是函數(shù)的一個(gè)極值點(diǎn)”的(

A)充分而不必要條件 (B)必要而不充分條件

C)充要條件 (D)既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二第一學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐中,底面為矩形,底面,分別是、中點(diǎn).

1求證:平面;

2求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二第一學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知正方體,點(diǎn),,分別線段的動(dòng)點(diǎn),觀察直線,.給出下列結(jié)論:

①對(duì)于任意給定的點(diǎn),存在點(diǎn),使得;

②對(duì)于任意給定的點(diǎn),存在點(diǎn),使得;

③對(duì)于任意給定的點(diǎn),存在點(diǎn),使得

④對(duì)于任意給定的點(diǎn),存在點(diǎn),使得

其中正確結(jié)論的個(gè)數(shù)是( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二第一學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知一個(gè)正方體的八個(gè)頂點(diǎn)都在同一個(gè)球面上,若此正方體的棱長(zhǎng)為,那么這個(gè)球的表面積為_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆北京東城(南片)高二上學(xué)期期末考試文數(shù)學(xué)試卷(解析版) 題型:填空題

已知點(diǎn)(2,3)與拋物線的焦點(diǎn)的距離是5,那么P .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案