(2012•松江區(qū)三模)如圖,目標(biāo)函數(shù)z=ax-y的可行域?yàn)樗倪呅蜲ACB(含邊界).若點(diǎn)C(3,2)是該目標(biāo)函數(shù)取最小值時(shí)的最優(yōu)解,則a的取值范圍是
-2≤a≤-
2
3
-2≤a≤-
2
3
分析:根據(jù)約束條件對(duì)應(yīng)的可行域,利用幾何意義求最值,z=ax-y表示直線在y軸上的截距的相反數(shù),結(jié)合圖象可求a的 范圍
解答:解:由可行域可知,直線AC的斜率KAC=
2-0
3-4
=-2
直線BC的斜率KBC=
2-4
3-0
=-
2
3
,
當(dāng)直線z=ax-y的斜率介于AC與BC之間時(shí),C是該目標(biāo)函數(shù)z=ax-y的最優(yōu)解,
所以a∈[-2,-
2
3
]
故答案為:-2≤a≤-
2
3
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法反求參數(shù)的范圍,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)擲兩顆骰子得兩數(shù),則事件“兩數(shù)之和大于4”的概率為
5
6
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)如圖放置的邊長(zhǎng)為1的正方形ABCD的頂點(diǎn)A、D分別在x軸、y軸正半軸上(含原點(diǎn))上滑動(dòng),則
OB
OC
的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)若鈍角三角形三內(nèi)角的度數(shù)成等差數(shù)列,且最大邊長(zhǎng)與最小邊長(zhǎng)的比值為m,則m的范圍是
m>2
m>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)若函數(shù)f(x)=2x+1,則f-1(3)=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)集合A={x|-3≤x≤2},B={x||x-a|≤1},且A?B,則實(shí)數(shù)a的取值范圍是
-2≤a≤1
-2≤a≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案