已知k∈Z,
AB
=(k,1),
AC
=(2,4),若|
AB
|≤
10
,若△ABC是直角三角形,則k=
-2,-1,3
-2,-1,3
分析:根據(jù) |
AB
|≤
10
及k∈Z易求出滿足條件的所有的k,然后分類討論△ABC是直角三角形時(shí)k的取值情況,即可得到答案.
解答:解:由 |
AB
|≤
10
及k∈Z知:
k∈{-3,-2,-1,0,1,2,3},
AB
=(k,1)與
AC
=(2,4)
垂直,
則2k+4=0⇒k=-2;
BC
=
AB
-
AC
=(k-2,-3)
AB
=(k,1)
垂直,
則k2-2k-3=0⇒k=-1或3,
故答案為:-2,-1,3.
點(diǎn)評(píng):本題主要考查向量的運(yùn)算,考查向量垂直的充要條件,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈Z,
AB
=(k,1),
AC
=(2,4),若|
AB
|≤4,則△ABC是直角三角形的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈Z,
AB
=(k,1),
AC
=(2,4)
,若|
AB
|≤
10
,則△ABC是直角三角形的概率是( 。
A、
1
7
B、
2
7
C、
3
7
D、
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈Z,
AB
=(k,1),
AC
=(2,4)
,若|
AB
|≤
10
,則△ABC是直角三角形的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知K∈Z,
AB
=(k,1),
AC
=(2,4),若|
AB
|
10
,則△ABC是直角三角形的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈Z,
AB
=(k,1),
AC
=(2,4)若|
AB
|≤
10
,則點(diǎn)A,B,C能組成以點(diǎn)A為直角頂點(diǎn)的直角三角形的概率為
1
7
1
7

查看答案和解析>>

同步練習(xí)冊(cè)答案