設
是兩條不同的直線,
是兩個不同的平面,下列命題正確的是( )
試題分析:A.若
,不正確,m,n在兩個平面內(nèi),可能平行、異面;
B.若
,不正確,并沒明確n在那個平面內(nèi);
C.若
,正確。因為
,
,
所以
,又
,故
,選C。
點評:典型題,要求牢記立體幾何中的定理。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)如圖幾何體,
是矩形,
,
,
為
上的點,且
.
(1)求證:
;
(2)求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
將銳角為
且邊長是2的菱形
,沿它的對角線
折成60°的二面角,則( )
①異面直線
與
所成角的大小是
.
②點
到平面
的距離是
.A.90°, | B.90°, | C.60°, | D.60°,2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
(理)如圖,將∠
B=,邊長為1的菱形
ABCD沿對角線
AC折成大小等于
θ的二面角
B-
AC-
D,若
θ∈[,],
M、
N分別為
AC、
BD的中點,則下面的四種說法:
①
AC⊥
MN;
②
DM與平面
ABC所成的角是
θ;
③線段
MN的最大值是,最小值是;
④當
θ=時,
BC與
AD所成的角等于.
其中正確的說法有
(填上所有正確說法的序號).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)
如圖所示是一個半圓柱
與三棱柱
的組合體,其中,圓柱
的軸截面
是邊長為4的正方形,
為等腰直角三角形,
.
試在給出的坐標紙上畫出此組合體的三視圖.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,平面
⊥平面
,
是直角三角形,
,四邊形
是直角梯形,其中
,
,
,且
,
是
的中點,
分別是
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知直線
,平面
,且
,
,給出下列命題
(1)若
,則
(2)若
,則
(3)若
,則
(4)若
,則
其中正確的命題個數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖所示,在三棱柱
中,
點為棱
的中點.
(1)求證:
.
(2)若三棱柱為直三棱柱,且各棱長均為
,求異面直線
與
所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列四個命題中,真命題的個數(shù)為( )(1)若兩平面有三個公共點,則這兩個平面重合;(2)兩條直線可以確定一個平面;(3)若
;(4)空間中,相交于同一點的三條直線在同一平面內(nèi)。
查看答案和解析>>