如圖,在△ABC中,D為BC邊的中點(diǎn),
AM
=
2
3
AB
AN
=
1
2
AC
,MN
與AD交于P點(diǎn),
AP
=x
AD
,則x=
4
7
4
7
分析:如圖所示:由題意可得 NP=
1
2
AB,NP∥AB,可得△NPD∽△MPA.由于AM=
2
3
AB,可得
AM
DN
=
2
3
AB
1
2
AB
=
4
3
,故
AP
AD
=
4
7
,由此求得x的值.
解答:解:如圖所示:由題意可得 NP=
1
2
AB,NP∥AB,
∴△NPD∽△MPA.
由于AM=
2
3
AB,
AM
DN
=
2
3
AB
1
2
AB
=
4
3
,
AP
PD
=
4
3

故 
AP
AD
=
4
7
,故
AP
=
4
7
AD
,故x=
4
7

故答案為
4
7
點(diǎn)評(píng):本題主要考查兩個(gè)向量共線(xiàn)的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,三角形相似的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
,
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線(xiàn),作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案