【題目】已知函數(shù)

1)求函數(shù)的最大值;

2)若函數(shù)存在兩個(gè)零點(diǎn),證明:

【答案】1)最大值是;(2)證明見(jiàn)解析.

【解析】

1)求出導(dǎo)數(shù),由導(dǎo)數(shù)確定單調(diào)性后可得最大值.

2)由(1)知兩個(gè)零點(diǎn),,零點(diǎn)間關(guān)系是,變形為,引入變量,則,要證的不等式等價(jià)變形為,,即證,(),為此引入新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性為減函數(shù),則可證得結(jié)論成立,這里需要多次求導(dǎo)變形再求導(dǎo)才可證明.

1)函數(shù)定義域是,由題意,

當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減,

所以時(shí),取得唯一的極大值也是最大值

2)由(1,即時(shí),有兩個(gè)零點(diǎn),(),則,,

,得,

,則,,

顯然成立,

要證,即證,

只要證,即證,(),

,

,

,則,

,

,

,時(shí),是減函數(shù),所以時(shí),,

所以是減函數(shù),,即),

所以是減函數(shù),,所以,時(shí)是減函數(shù),

,即,所以上是減函數(shù),

所以,即,

綜上,成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】東莞的輕軌給市民出行帶來(lái)了很大的方便,越來(lái)越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開(kāi)汽車(chē)到離家最近的輕軌站,將車(chē)停放在輕軌站停車(chē)場(chǎng),然后進(jìn)站乘輕軌出行,這給輕軌站停車(chē)場(chǎng)帶來(lái)很大的壓力.某輕軌站停車(chē)場(chǎng)為了解決這個(gè)問(wèn)題,決定對(duì)機(jī)動(dòng)車(chē)停車(chē)施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(4小時(shí))每輛每次收費(fèi)5元;超過(guò)4小時(shí)不超過(guò)6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過(guò)6小時(shí)不超過(guò)8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過(guò)8小時(shí)至24小時(shí)內(nèi)(24小時(shí))收費(fèi)30元;超過(guò)24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車(chē)場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車(chē)的停留時(shí)間(假設(shè)每輛車(chē)一天內(nèi)在該停車(chē)場(chǎng)僅停車(chē)一次),得到下面的頻數(shù)分布表:

以車(chē)輛在停車(chē)場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車(chē)輛在停車(chē)場(chǎng)停留時(shí)間位于各區(qū)間的概率.

(1)現(xiàn)在用分層抽樣的方法從上面1000輛車(chē)中抽取了100輛車(chē)進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車(chē)時(shí)長(zhǎng)與司機(jī)性別的列聯(lián)表:

完成上述列聯(lián)表,并判斷能否有的把握認(rèn)為停車(chē)是否超過(guò)6小時(shí)與性別有關(guān)?

(2)(i)X表示某輛車(chē)一天之內(nèi)(含一天)在該停車(chē)場(chǎng)停車(chē)一次所交費(fèi)用,求X的概率分布列及期望:

(ii)現(xiàn)隨機(jī)抽取該停車(chē)場(chǎng)內(nèi)停放的3輛車(chē),表示3輛車(chē)中停車(chē)費(fèi)用大于的車(chē)輛數(shù),求P()的概率.

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中,已知公差 ,且 , 成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據(jù)題意 , 成等比數(shù)列得求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得,得,由,得,∴ 計(jì)算 即可得出結(jié)論

解析:(1)由題意可得,則 ,

,即,

化簡(jiǎn)得,解得(舍去).

.

(2)由(1)得時(shí),

,得,由,得

.

.

點(diǎn)睛:對(duì)于數(shù)列第一問(wèn)首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問(wèn)前n項(xiàng)的絕對(duì)值的和問(wèn)題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論

型】解答
結(jié)束】
18

【題目】甲、乙兩家銷(xiāo)售公司擬各招聘一名產(chǎn)品推銷(xiāo)員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷(xiāo)售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷(xiāo)售量不超過(guò)45件沒(méi)有提成,超過(guò)45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷(xiāo)員的日工資 (單位: 元) 分別表示為日銷(xiāo)售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷(xiāo)員,對(duì)他們過(guò)去100天的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷(xiāo)員的日工資為,乙公司該推銷(xiāo)員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問(wèn)題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷(xiāo)員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高二年級(jí)組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車(chē)前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車(chē),自行打車(chē)的平均時(shí)間為 (單位:分鐘) ,而乘坐定制公交的平均時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:

(1)當(dāng)在什么范圍內(nèi)時(shí),乘坐定制公交的平均時(shí)間少于自行打車(chē)的平均時(shí)間?

(2)求該校學(xué)生參加考試平均時(shí)間的表達(dá)式:討論的單調(diào)性,并說(shuō)明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=Asinωx+B的部分圖象如圖所示,其中A0,ω0|φ|

(Ⅰ)求函數(shù)yfx)解析式;

(Ⅱ)求x[0]時(shí),函數(shù)yfx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代重要建筑的室內(nèi)上方,通常會(huì)在正中部位做出向上凸起的窟窿狀裝飾,這種裝飾稱為藻井.北京故宮博物院內(nèi)的太和殿上方即有藻井(圖1),全稱為龍風(fēng)角蟬云龍隨瓣枋套方八角深金龍?jiān)寰?/span>.它展示出精美的裝飾空間和造型藝術(shù),是我國(guó)古代豐富文化的體現(xiàn),從分層構(gòu)造上來(lái)看,太和殿藻井由三層組成:最下層為方井,中為八角井,上為圓井.2是由圖1抽象出的平面圖形,若在圖2中隨機(jī)取一點(diǎn),則此點(diǎn)取自圓內(nèi)的概率為( )

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565256704/STEM/4d65bbaaf0c447efbbb2157ff8983df0.png]

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過(guò)作斜率為的直線,兩點(diǎn),以線段為直徑的圓.當(dāng)時(shí),圓的半徑為2.

1)求的方程;

2)已知點(diǎn),對(duì)任意的斜率,圓上是否總存在點(diǎn)滿足,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),以下結(jié)論:

平面

;

③三棱錐,體積不變;

中點(diǎn)時(shí),直線與平面所成角最大.

其中正確的序號(hào)為( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是一直角梯形,,,底面.

1)在線段上是否存在一點(diǎn)F,使得平面,若存在,求出的值;若不存在,試說(shuō)明理由;

2)在(1)的條件下,若所成的角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案