定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱(chēng)f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號(hào)為

[  ]

A.①②

B.③④

C.①③

D.②④

答案:C
解析:

  等比數(shù)列性質(zhì),,①

 、;

 、;

  ④


提示:

本題考察等比數(shù)列性質(zhì)及函數(shù)計(jì)算.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在{-2,-1,0,1,2}上的奇函數(shù),且f(-1)=
12
,f(2)=1,則f(0)=
 
;f(x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2001•江西)若定義在區(qū)間(-1,0)內(nèi)的函數(shù)f(x)=log2a(x+1)滿(mǎn)足f(x)>0,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)如果定義在區(qū)間(-1,0)的函數(shù)f(x)=log3a(x+1)滿(mǎn)足f(x)<0,求a的取值范圍;
(2)解方程:log3(3+2•3x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上且x≠0的可導(dǎo)偶函數(shù),且x>0時(shí),f(x)+x•f′(x)>0,f(2)=0,則f(x)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在D={x∈R|x≠0}上的函數(shù)f(x)滿(mǎn)足兩個(gè)條件:①對(duì)于任意x、y∈D,都有f(x)f(y)-f(xy)=
x2+y2
xy
;②曲線y=f(x)存在與直線x+y+1=0平行的切線.
(Ⅰ)求過(guò)點(diǎn)(-1,
1
4
)的曲線y=f(x)的切線的一般式方程;
(Ⅱ)當(dāng)x∈(0,+∞),n∈N+時(shí),求證:fn(x)-f(xn)≥2n-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案