已知函數(shù)為常數(shù),e是自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),證明恒成立;
(Ⅱ)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍.
(Ⅰ)確定函數(shù)有最小值,所以恒成立.
(Ⅱ)實(shí)數(shù)的取值范圍是.
【解析】
試題分析:(Ⅰ)由得,所以.
由得,故的單調(diào)遞增區(qū)間是,
由得,故的單調(diào)遞減區(qū)間是.
所以函數(shù)有最小值,所以恒成立.
(Ⅱ)由可知是偶函數(shù).
于是對任意成立等價(jià)于對任意成立.
由得.
①當(dāng)時(shí),.
此時(shí)在上單調(diào)遞增.
故,符合題意.
②當(dāng)時(shí),.
當(dāng)變化時(shí)的變化情況如下表:
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
由此可得,在上,.
依題意,,又.
綜合①,②得,實(shí)數(shù)的取值范圍是.
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值及不等式恒成立問題。
點(diǎn)評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,通過研究函數(shù)的單調(diào)性,明確了極值情況。涉及不等式恒成立問題,轉(zhuǎn)化成了研究函數(shù)的單調(diào)性及最值,得到求證不等式。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省鳳陽藝榮高考補(bǔ)習(xí)學(xué)校高三(上)第五次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省唐山市路北區(qū)開灤一中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省數(shù)學(xué)試卷雙流市棠中外語學(xué)校高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省遂寧市射洪中學(xué)高三零診數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com