已知定點(diǎn)A(0,1)、B(0,-1)、C(1,0),動(dòng)點(diǎn)P滿足·=k||2.
(1) 求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明方程表示的曲線.
(2) 當(dāng)k=2時(shí),求|2|的最大值和最小值
(1)設(shè)動(dòng)點(diǎn)的坐標(biāo)為P(x,y),則
=(x,y-1),=(x,y+1),=(1-x,-y).
·=k||2, ∴x2+y2-1=k[(x-1)2+y2], ∴(1-k)x2+(1-k)y2+2kx-k-1=0.
若k=1,則方程為x=1,表示過(guò)點(diǎn)(1,0)且平行于y軸的直線.
若k≠1,則方程化為2+y22,
表示以為圓心,以為半徑的圓.
(2)當(dāng)k=2時(shí),方程化為(x-2)2+y2=1.
∵2=2(x,y-1)+(x,y+1)=(3x,3y-1),
∴|2|=.
又∵(x-2)2+y2=1,則令x=2+cosθ,y=sinθ,
于是有36x-6y-26=36cosθ-6sinθ+46=6cos(θ+φ)+46∈[46-6,46+6],
故|2|的最大值為=3+,最小值為-3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)軸上動(dòng)點(diǎn)引拋物線的兩條切線、、為切點(diǎn).
(1)若切線的斜率分別為,求證: 為定值,并求出定值;
(2)求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo); 
(3)當(dāng)最小時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線過(guò)點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿足OP⊥ON,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一坐標(biāo)系下,下列曲線中,右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以下命題正確的有________________.
①到兩個(gè)定點(diǎn) 距離的和等于定長(zhǎng)的點(diǎn)的軌跡是橢圓;
②“若,則”的逆否命題是“若,則ab≠0”;
③若兩個(gè)平面垂直,則一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的任意一條直線;
④兩圓在交點(diǎn)處的切線互相垂直,那么實(shí)數(shù)的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2)為坐標(biāo)原點(diǎn),是否存在平行于的直線,使得直線與拋物線有公共點(diǎn),且直線的距離為?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列三個(gè)命題:①若直線過(guò)拋物線的焦點(diǎn),且與這條拋物線交于兩點(diǎn),則的最小值為;②雙曲線的離心率為;③若,則這兩圓恰有條公切線.④若直線與直線互相垂直,則
其中正確命題的序號(hào)是          .(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是直角三角形的三邊(為斜邊),則圓截直線所得的弦長(zhǎng)等于
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案