某高校在2013年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)共分五組,得到頻率分布表如下表所示。
組號(hào)
分組
頻數(shù)
頻率
第一組
[160,165)
5
0.05
第二組
[165,170)
35
0.35
第三組
[170,175)
30
a
第四組
[175,180)
b
0.2
第五組
[180,185)
10
0.1
(Ⅰ)求的值;
(Ⅱ)為了能選出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取12人進(jìn)入第二輪面試,求第3、4、5組中每組各抽取多少人進(jìn)入第二輪的面試;考生李翔的筆試成績(jī)?yōu)?78分,但不幸沒入選這100人中,那這樣的篩選方法對(duì)該生而言公平嗎?為什么?
(Ⅲ)在(2)的前提下,學(xué)校決定在12人中隨機(jī)抽取3人接受“王教授”的面試,設(shè)第4組中被抽取參加“王教授”面試的人數(shù)為,求的分布列和數(shù)學(xué)期望.
(Ⅰ),;(Ⅱ)公平;(Ⅲ)

0
1
2
3
P




 

試題分析:(Ⅰ)由頻率分布表中各組頻率之和為1可求;總的頻數(shù)為100可求;(Ⅱ)按照隨機(jī)抽樣的原則可知方法公平;(Ⅲ)按照分布列的取值情況求對(duì)應(yīng)的概率即可.
試題解析:(Ⅰ)由題意知,組頻率總和為,故第組頻率為,所以    2分
總的頻數(shù)為,因此第組的頻數(shù)為,即    4分
(Ⅱ)第組共名學(xué)生,現(xiàn)抽取人,因此第組抽取的人數(shù)為:人,
組抽取的人數(shù)為:人,第組抽取的人數(shù)為:人     7分
公平:因?yàn)閺乃械膮⒓幼灾骺荚嚨目忌须S機(jī)抽取人,每個(gè)人被抽到的概率是相同的     8分
(只寫“公平”二字,不寫理由,不給分)
(Ⅲ)的可能取值為       
      
的分布列為:

0
1
2
3
P




11分
      12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某品牌汽車4店經(jīng)銷三種排量的汽車,其中三種排量的汽車依次有5,4,3款不同車型.某單位計(jì)劃購(gòu)買3輛不同車型的汽車,且購(gòu)買每款車型等可能.
(1)求該單位購(gòu)買的3輛汽車均為種排量汽車的概率;
(2)記該單位購(gòu)買的3輛汽車的排量種數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)有A,B兩球隊(duì)進(jìn)行友誼比賽,設(shè)A隊(duì)在每局比賽中獲勝的概率都是
(Ⅰ)若比賽6局,求A隊(duì)至多獲勝4局的概率;
(Ⅱ)若采用“五局三勝”制,求比賽局?jǐn)?shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校50名學(xué)生參加智力答題活動(dòng),每人回答3個(gè)問題,答對(duì)題目個(gè)數(shù)及對(duì)應(yīng)人數(shù)統(tǒng)計(jì)結(jié)果見下表:
答對(duì)題目個(gè)數(shù)
0
1
2
3
人數(shù)
5
10
20
15
根據(jù)上表信息解答以下問題:
(Ⅰ)從50名學(xué)生中任選兩人,求兩人答對(duì)題目個(gè)數(shù)之和為4或5的概率;
(Ⅱ)從50名學(xué)生中任選兩人,用X表示這兩名學(xué)生答對(duì)題目個(gè)數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某射擊小組有甲、乙兩名射手,甲的命中率為P1,乙的命中率為P2,在射擊比賽活動(dòng)中每人射擊兩發(fā)子彈則完成一次檢測(cè),在一次檢測(cè)中,若兩人命中數(shù)相等且都不少于一發(fā),則稱該射擊小組為“先進(jìn)和諧組”.
(1)若P2,求該小組在一次檢測(cè)中榮獲“先進(jìn)和諧組”的概率;
(2)計(jì)劃在2013年每月進(jìn)行1次檢測(cè),設(shè)這12次檢測(cè)中該小組獲得“先進(jìn)和諧組”的次數(shù)為ξ,如果E(ξ)≥5,求P2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市舉行一次數(shù)學(xué)新課程骨干培訓(xùn)活動(dòng),共邀請(qǐng)15名使用不同版本教材的數(shù)學(xué)教師,具體情況數(shù)據(jù)如下表所示:
版本
人教A版
人教B版
性別
男教師
女教師
男教師
女教師
人數(shù)
6

4

 
現(xiàn)從這15名教師中隨機(jī)選出2名,則2人恰好是教不同版本的女教師的概率是.且.
(1)求實(shí)數(shù),的值
(2)培訓(xùn)活動(dòng)現(xiàn)隨機(jī)選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市直小學(xué)為了加強(qiáng)管理,對(duì)全校教職工實(shí)行新的臨時(shí)事假制度:“每位教職工每月在正常的工作時(shí)間,臨時(shí)有事,可請(qǐng)假至多三次,每次至多一小時(shí)”.現(xiàn)對(duì)該制度實(shí)施以來50名教職工請(qǐng)假的次數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),結(jié)果如下表所示:
請(qǐng)假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問題:
(1)從該小學(xué)任選兩名教職工,用表示這兩人請(qǐng)假次數(shù)之和,記“函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn)”為事件,求事件發(fā)生的概率;
(2)從該小學(xué)任選兩名職工,用表示這兩人請(qǐng)假次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在某國(guó)際高端經(jīng)濟(jì)論壇上,前六位發(fā)言的是與會(huì)的含有甲、乙的6名中國(guó)經(jīng)濟(jì)學(xué)專家,他們的發(fā)言順序通過隨機(jī)抽簽方式?jīng)Q定.
(Ⅰ)求甲、乙兩位專家恰好排在前兩位出場(chǎng)的概率;
(Ⅱ)發(fā)言中甲、乙兩位專家之間的中國(guó)專家數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、隨機(jī)變量Y~,且,,則    
A. n="4" p=0.9B.n="9" p="0.4" C.n="18" p=0.2D.N="36" p=0.1

查看答案和解析>>

同步練習(xí)冊(cè)答案