求等比數(shù)列,…從第3項到第7項的和.

答案:
解析:

解法一:由Sn=,q=÷= .

S2=,

S7=

S7S2=.

從第3項到第7項的和為

解法二:由a1=,a2=,q=

an=a1·qn1=·()n1=,

a7=

從第3項到第7項的和為以為首項,q=5項之和.

.

從第3項到第7項的和為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x2+1,g(x)=2x,數(shù)列{an}滿足對于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.數(shù)列{bn}滿足bn=logana,設k,l∈N*,bk=
1
1+3l
,bl=
1
1+3k

(1)求證:數(shù)列{an}為等比數(shù)列,并指出公比;
(2)若k+l=9,求數(shù)列{bn}的通項公式.
(3)若k+l=M0(M0為常數(shù)),求數(shù)列{an}從第幾項起,后面的項都滿足an>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•臨沂二模)如圖,給出了一個三角形數(shù)陣,已知每一列的數(shù)成等差數(shù)列,從第3行起,每一行的數(shù)成等比數(shù)列,每一行的公比都相等.記第i行第j列的數(shù)為aij(i≥j,i,j∈N*
(I)求a43;    
(Ⅱ)寫出aij;
(Ⅲ)設這個數(shù)陣共有n行,求數(shù)陣中所有數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x(x2+3)
3x2+1
,數(shù)列{an}滿足對于一切n∈N*有an>1,且an+1=f(an).數(shù)列{bn}滿足,bn=
1
loga(ln
an-1
an+1
)
(a>0且a≠1)設k,l∈N*,bk=
1
1+3l
bl=
1
1+3k

(Ⅰ)求證:數(shù)列{ln
an-1
an+1
}
為等比數(shù)列,并指出公比;
(Ⅱ)若k+l=5,求數(shù)列{bn}的通項公式;
(Ⅲ)若k+l=M0(M0為常數(shù)),求數(shù)列{abn}從第幾項起,后面的項都滿足abn>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,給出了一個三角形數(shù)陣,已知每一列的數(shù)成等差數(shù)列,從第3行起,每一行的數(shù)成等比數(shù)列,每一行的公比都相等.記第行第列的數(shù)為(∈N*).

(1)試寫出關于的表達式,并求

(2)設數(shù)陣中第n行的所有數(shù)之和為An,     求An

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,給出了一個三角形數(shù)陣,已知每一列的數(shù)成等差數(shù)列,從第3行起,每一行的數(shù)成等比數(shù)列,每一行的公比都相等,記第

   (I)求;

   (II)寫出;

   (III)設這個數(shù)陣共有n行,求數(shù)陣中所有數(shù)之和。

查看答案和解析>>

同步練習冊答案