若圖中的直線(xiàn)l1、l2、l3的斜率分別為k1、k2、k3,則( 。
分析:由圖象看出三條直線(xiàn)的傾斜角的范圍和大小,然后利用正切函數(shù)的象限符號(hào)和單調(diào)性得到三條直線(xiàn)的斜率的大小關(guān)系.
解答:解:因?yàn)橹本(xiàn)的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時(shí),斜率為負(fù)值,
當(dāng)傾斜角大于0°小于90°時(shí)斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),
由圖象三條直線(xiàn)的傾斜角可知,k2<k1<k3
故選B.
點(diǎn)評(píng):本題考查了直線(xiàn)的傾斜角和斜率的關(guān)系,直線(xiàn)的斜率就是直線(xiàn)傾斜角的正切值,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面中兩條直線(xiàn)l1和l 2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若x,y分別是M到直線(xiàn)l 1和l 2的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(x,y)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個(gè)命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且只有1個(gè);
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為( p,q) 的點(diǎn)有且只有2個(gè);
③若pq≠0則“距離坐標(biāo)”為 ( p,q) 的點(diǎn)有且只有3個(gè).
上述命題中,正確的有
①②
①②
.(填上所有正確結(jié)論對(duì)應(yīng)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=3x2-3x直線(xiàn)l1:x=2和l2:y=3tx,其中t為常數(shù)且0<<1.直線(xiàn)l2與函數(shù)f(x)的圖象以及直線(xiàn)l1、l2與函數(shù)f(x)的圖象圍成的封閉圖形如圖中陰影所示,設(shè)這兩個(gè)陰影區(qū)域的面積之和為S(t).
(1)求函數(shù)S(t)的解析式;
(2)若函數(shù)L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說(shuō)明理由;
(3)定義函數(shù)h(x)=S(x),x∈R若過(guò)點(diǎn)A(1,m)(m≠4)可作曲線(xiàn)y=h(x)(x∈R)的三條切線(xiàn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)f(x)=3x2-3x直線(xiàn)l1:x=2和l2:y=3tx,其中t為常數(shù)且0<<1.直線(xiàn)l2與函數(shù)f(x)的圖象以及直線(xiàn)l1、l2與函數(shù)f(x)的圖象圍成的封閉圖形如圖中陰影所示,設(shè)這兩個(gè)陰影區(qū)域的面積之和為S(t).
(1)求函數(shù)S(t)的解析式;
(2)若函數(shù)L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說(shuō)明理由;
(3)定義函數(shù)h(x)=S(x),x∈R若過(guò)點(diǎn)A(1,m)(m≠4)可作曲線(xiàn)y=h(x)(x∈R)的三條切線(xiàn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.

(1)若直線(xiàn)l過(guò)點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線(xiàn)l的方程;

(2)設(shè)P為平面上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線(xiàn)l1l2,它們分別與圓C1C2相交,且直線(xiàn)l1被圓C1截得的弦長(zhǎng)與直線(xiàn)l2C2截得的弦長(zhǎng)相等.試求所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面中兩條直線(xiàn)l1和l 2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若x,y分別是M到直線(xiàn)l 1和l 2的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(x,y)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個(gè)命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且只有1個(gè);

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為( p,q) 的點(diǎn)有且只有2個(gè);

③若pq≠0則“距離坐標(biāo)”為 ( p,q) 的點(diǎn)有且只有3個(gè).

上述命題中,正確的有、佗凇.(填上所有正確結(jié)論對(duì)應(yīng)的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案