設(shè)cos(α-3π)=
2
4
,則
sin2α-2cos2α
sin(α-
π
4
)
值是
 
分析:根據(jù)誘導(dǎo)公式先將cos(α-3π)化簡(jiǎn)為-cosα,再根據(jù)二倍角公式和兩角差的正弦公式對(duì)所求式進(jìn)行化簡(jiǎn)可得.
解答:解:∵cos(α-3π)=
2
4
∴cosα=-
2
4

sin2α-2cos2α
sin(a-
π
4
)
=
2sinαcosα-2cos2α
2
2
(sinα-cosα)
=2
2
cosα
=-1.
故答案為:-1.
點(diǎn)評(píng):本題主要看考場(chǎng)三角函數(shù)的誘導(dǎo)公式、二倍角公式和兩角差的正弦公式.三角函數(shù)題一般都是小型的綜合題,這里公式多,要注意公式的記憶和靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)cos(α-3π)=
2
4
,則
sin2α-2cos2α
sin(α-
π
4
)
值是( 。
A、-1
B、1
C、-
2
4
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,設(shè)P是直線l:ρ(cosθ+sinθ)=4上任一點(diǎn),Q是圓C:ρ2=4ρcosθ-3上任一點(diǎn),則|PQ|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)cos(α+
π
3
)=
1
4
,則cos(2α-
π
3
)
=( 。
A、-
7
8
B、
7
8
C、±
7
8
D、-
15
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)cos(α-3π)=
2
4
,則
sin2α-2cos2α
sin(α-
π
4
)
值是(  )
A.-1B.1C.-
2
4
D.
2
4

查看答案和解析>>

同步練習(xí)冊(cè)答案