已知數(shù)列{an}的前n項的和為Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2,n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=(2n-1)an,求數(shù)列{bn}的前n項的和Tn.
分析:(Ⅰ)對3S
n=5a
n-a
n-1+3S
n-1化簡整理得
=,進而可以推斷數(shù)列{a
n}是以2為首項,
為公比的等比數(shù)列,根據(jù)等比數(shù)列的通項公式求得答案.
(Ⅱ)把(1)中求得a
n代入b
n=(2n-1)a
n中求得b
n,進而通過錯位相減法求得T
n.
解答:解:(Ⅰ)由3S
n=5a
n-a
n-1+3S
n-1∴3a
n=5a
n-a
n-1(n≥2,n∈N
*)
∴
=,(n≥2,n∈N
*),
所以數(shù)列{a
n}是以2為首項,
為公比的等比數(shù)列,
∴a
n=2
2-n
(Ⅱ)b
n=(2n-1)•2
2-n∴T
n=1×2+3×2
0+5×2
-1++(2n-1)•2
2-n同乘公比得
Tn=1×20+3×2-1+5×2-2++(2n-1)•21-n∴
Tn=1×2+2×20+2×2-1+2×2-2++2•22-n-(2n-1)21-n=
2+4[1-()n-1]-(2n-1)•21-n∴T
n=12-(2n+3)•2
2-n.
點評:本題主要考查了數(shù)列的遞推式.對于由等比數(shù)列和等差數(shù)列構(gòu)成的數(shù)列常可用錯位相減法求得前n項和.