數(shù)列
1
2•5
,
1
5•8
,
1
8•11
1
(3n-1)(3n+2)
,…的前n項和Sn為(  )
分析:
1
(3n-1)(3n+2)
1
3
(
1
3n-1
-
1
3n+2
)
,利用裂項求和即可求解
解答:解:∵
1
(3n-1)(3n+2)
1
3
(
1
3n-1
-
1
3n+2
)

Sn=
1
2•5
+
1
5•8
+…+
1
(3n-1)(3n+2)

=
1
3
(
1
2
-
1
5
+
1
5
-
1
8
+…+
1
3n-1
-
1
3n+2
)

=
1
3
(
1
2
-
1
3n+2
)
=
n
6n+4

故選B
點評:本題主要考查了數(shù)列求和的裂項求和方法的應用,解題中要注意
1
(3n-1)(3n+2)
1
3
(
1
3n-1
-
1
3n+2
)
右面的系數(shù)
1
3
是解題中容易漏掉的.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某學校課題小組為了研究學生的數(shù)學成績與物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數(shù)學成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):
數(shù)學成績優(yōu)秀 數(shù)學成績不優(yōu)秀 合計
物理成績優(yōu)秀
物理成績不優(yōu)秀
合計 20
(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認為學生的數(shù)學成績與物理成績之間有關系?
(3)若從這20個人中抽出1人來了解有關情況,求抽到的學生數(shù)學成績與物理成績至少有一門不優(yōu)秀的概率.
參考數(shù)據(jù):
①假設有兩個分類變量X和Y,它們的值域分別為{x1,x2}和{y1,y2},其樣本頻數(shù)列聯(lián)表(稱為2×2列聯(lián)表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

14、正整數(shù)按下表排列:
1   2   5   10   17  …
4   3   6   11   18  …
9   8   7   12   19  …
16  15  14  13   20  …
25  24  23  22   21  …

位于對角線位置的正整數(shù)1,3,7,13,21,…,構成數(shù)列{an},則a7=
43
;通項公式an=
n2-n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校課題組為了研究學生的數(shù)學成績與物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數(shù)學成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):
數(shù)學成績優(yōu)秀 數(shù)學成績不優(yōu)秀   合   計
物理成績優(yōu)秀
物理成績不優(yōu)秀
合   計 20
(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認為學生的數(shù)學成績與物理成績之間有關系?
參考數(shù)據(jù):
①假設有兩個分類變量X和Y,它們的值域分別為{x1,x2}和y1,y2,其樣本頻數(shù)列聯(lián)表(稱為2×2列聯(lián)表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

數(shù)列
1
2•5
,
1
5•8
1
8•11
1
(3n-1)(3n+2)
,…的前n項和Sn為(  )
A.
n
3n+2
B.
n
6n+4
C.
3n
6n+4
D.
n+1
n+2

查看答案和解析>>

同步練習冊答案