已知f(x)=lg(
2
1-x
+a)是奇函數(shù),則實數(shù)a的值是
 
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)奇函數(shù)的性質(zhì)即可求出a的值.
解答: 解:∵f(x)=lg(
2
1-x
+a)是奇函數(shù),
∴f(0)=0,
即f(0)=lg(2+a)=0,
解得a=-1,
故答案為:-1
點評:本題主要考查了對數(shù)函數(shù)的圖象和性質(zhì),屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設A={-1,1,2},B={1,3},則A∪B=( 。
A、{1}
B、{-1,1,1,2,3}
C、{-1,1,2,3}
D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={x|4-x2>0},N={x∈R||x-1|≤2},則M∩N等于(  )
A、{x|-2<x≤3}
B、{x|-1≤x<2}
C、{x|-2<x≤-1}
D、{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<x,y<1,求
xy(1-x-y)
(x+y)(1-x)(1-y)
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在x∈(0,1),使x-a>log0.5x成立,則實數(shù)a的取值范圍是( 。
A、(-∞,+∞)
B、(-∞,-1)
C、(-∞,1)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(kx+1)(k∈R).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在[-10,﹢∞)是單調(diào)增函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點分別為A、B,上頂點為M(0,1),點P是橢圓C上的動點(異于A、B),直線AP,BP與直線y=3分別交于兩點G、H,且△AMP面積的最大值為1+
2

(1)求橢圓C的方程;
(2)求線段GH的長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一條光線從點P(1,1)發(fā)出,先經(jīng)x軸反射,又經(jīng)y軸反射后過點Q(2,3),則光線從點P到點Q所經(jīng)過的路程為(  )
A、
5
B、5
C、
13
D、
17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間四邊形ABCD中,AB=AD,CB=CD,E為BD的中點.求證:BD⊥平面ACE.

查看答案和解析>>

同步練習冊答案