平面上有n(n≥2)條直線,其中任意兩條不平行,任意三條不共點,f(k)表示n=k時平面被分成的區(qū)域數(shù),則f(k+1)=f(k)+


  1. A.
    k
  2. B.
    k+1
  3. C.
    k-1
  4. D.
    k+2
A
分析:由題意兩條直線交于一點,而三條直線時,第三條直線分別與前兩條直線有一個交點,即增加了2個交點,同理第四條直線與前三條直線相交時增加3個交點,…類別可求
解答:由題意可得,f(2)=1
f(3)-f(2)=2
f(4)-f(3)=3

f(k+1)-f(k)=k
故選A.
點評:本題以數(shù)列的遞推關系為載體,著重考查了立體幾何中的直線與直線的位置關系的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

平面上有n(n≥2)條直線,其中任意兩條不平行,任意三條不共點,f(k)表示n=k時平面被分成的區(qū)域數(shù),則f(k+1)=f(k)+( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面上有n(n≥2,n∈N)個圓兩兩相交,則最多有
n(n-1)
n(n-1)
個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面上有n(n≥2)個圓,其中每兩個圓都相交于兩點,任何三個圓無公共點.這n個圓將平面分成f(n)塊區(qū)域,可數(shù)得f(2)=4,f(3)=8,f(4)=14,則f(n)的表達式為
n2-n+2
n2-n+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

平面上有n個圓,其中每兩個圓之間都相交于兩個點,每三個圓都無公共點,它們將平面分成f(n)塊區(qū)域,則f(n)的表達式是


  1. A.
    2n
  2. B.
    2n-(n-1)(n-2)(n-3)
  3. C.
    n3-5n2+10n-4
  4. D.
    n2-n+2

查看答案和解析>>

科目:高中數(shù)學 來源:2010年寧夏銀川二中高考數(shù)學模擬試卷2(理科)(解析版) 題型:填空題

平面上有n(n≥2)個圓,其中每兩個圓都相交于兩點,任何三個圓無公共點.這n個圓將平面分成f(n)塊區(qū)域,可數(shù)得f(2)=4,f(3)=8,f(4)=14,則f(n)的表達式為   

查看答案和解析>>

同步練習冊答案