如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.

(1)求異面直線A1B與C1D所成角的余弦值;

(2)求平面ADC1與平面ABA1夾角的正弦值.

 

(1) (2)

【解析】【解析】
(1)以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),∴=(2,0,-4),=(1,-1,-4).

∵cos〈,〉=

∴異面直線A1B與C1D所成角的余弦值為.

(2)設(shè)平面ADC1的法向量為n1=(x,y,z),∵=(1,1,0),=(0,2,4),∴n1·=0,n1·=0,即x+y=0且2y+4z=0,取z=1,得x=2,y=-2,∴n1=(2,-2,1)是平面ADC1的一個法向量.取平面AA1B的一個法向量為n2=(0,1,0),設(shè)平面ADC1與平面ABA1夾角的大小為θ.

由cosθ=,得sinθ=.

因此,平面ADC1與平面ABA1夾角的正弦值為.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-5橢圓(解析版) 題型:選擇題

橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為(  )

A. B. C.2 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點坐標(biāo)與距離公式(解析版) 題型:填空題

若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為,則的值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題

已知直線PQ的斜率為-,將直線繞點P順時針旋轉(zhuǎn)60°所得的直線的斜率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:選擇題

直線2x-my+1-3m=0,當(dāng)m變化時,所有直線都過定點(  )

A.(-,3) B.(,3)

C.(,-3) D.(-,-3)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-7立體幾何中的向量方法(解析版) 題型:選擇題

如圖,在四棱錐P-ABCD中,側(cè)面PAD為正三角形,底面ABCD為正方形,側(cè)面PAD⊥底面ABCD,M為底面ABCD內(nèi)的一個動點,且滿足MP=MC,則點M在正方形ABCD內(nèi)的軌跡為(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運算(解析版) 題型:選擇題

如圖所示,在正方體ABCD-A1B1C1D1

中,O是底面正方形ABCD的中心,M是D1D的中點,N是A1B1上的動點,則直線NO、AM的位置關(guān)系是(  )

A.平行 B.相交

C.異面垂直 D.異面不垂直

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:填空題

如圖PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點,AE⊥PC,AF⊥PB,給出下列結(jié)論:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命題的序號是________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:選擇題

某個長方體被一個平面所截,得到的幾何體的三視圖如圖所示,則這個幾何體的體積為(  )

A.4 B.2 C. D.8

 

查看答案和解析>>

同步練習(xí)冊答案