18.復(fù)數(shù)z=$\frac{2-i}{1+i}$(其中i是虛數(shù)單位)的虛部為( 。
A.$-\frac{3}{2}i$B.$\frac{1}{2}i$C.$-\frac{3}{2}$D.$\frac{1}{2}$

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:∵z=$\frac{2-i}{1+i}$=$\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
∴復(fù)數(shù)z=$\frac{2-i}{1+i}$的虛部為$-\frac{3}{2}$.
故選:C.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=\frac{a}{3}{x^3}-\frac{3}{2}{x^2}+(a+1)x+1$,其中a為實(shí)數(shù).
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求a的值;
(Ⅱ)若不等式f'(x)<-4x+2+a對任意x∈(1,+∞)都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,則z=x+y的最大值為(  )
A.$\frac{1}{2}$B.-3C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x≥y>0,若存在實(shí)數(shù)a,b滿足0≤a≤x,0≤b≤y,且(x-a)2+(y-b)2=x2+b2=y2+a2.則$\frac{y}{x}$的最大值為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
(2)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{a}cosC=({3-\frac{c}{a}})cosB$.
(1)求sinB的值;
(2)若D為AC的中點(diǎn),且BD=1,求△ABD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z=3+4i,i為虛數(shù)單位,$\overline z$是z的共軛復(fù)數(shù),則$\frac{i}{\overline{z}}$=( 。
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{4}{5}-\frac{3}{5}i$C.$-\frac{4}{25}+\frac{3}{25}i$D.$-\frac{4}{25}-\frac{3}{25}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比是q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.證明:${(x-\frac{1}{x})^{2n}}$的展開式中的中間一項(xiàng)是${(-2)^n}\frac{1×3×5×…×(2n-1)}{n!}$.

查看答案和解析>>

同步練習(xí)冊答案