【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,PA=AB=1,
(1)證明:BD⊥平面PAC;
(2)若E是PC的中點(diǎn),F是棱PD上一點(diǎn),且BE∥平面ACF,求二面角F﹣AC﹣D的余弦值.
【答案】(1)見解析(2).
【解析】
(1)根據(jù),利用勾股定理得PA⊥AB,PA⊥AD,利用線面垂直的判定定理得到PA⊥平面ABCD,從而PA⊥BD,再根據(jù)ABCD為正方形,有AC⊥BD得證.
(2)連接ED,取ED的中點(diǎn)M,由三角形的中位線定理得BE∥OM,從而BE∥平面ACM,平面ACM與PD的交點(diǎn)即為F.然后建立空間直角坐標(biāo)系,分別求得平面ACF,平面ACD的法向量,代入向量夾角公式求解.
(1)證明:∵,
∴PA⊥AB,PA⊥AD,AB∩AD=A,
∴PA⊥平面ABCD,
∴PA⊥BD.
又∵ABCD為正方形,∴AC⊥BD,PA∩AC=A,
∴BD⊥平面PAC.
(2)如圖,
連接ED,取ED的中點(diǎn)M,
設(shè)AC∩BD=O,連接OM,則BE∥OM,
從而BE∥平面ACM,平面ACM與PD的交點(diǎn)即為F.
建立如圖所示的空間直角坐標(biāo)系O﹣xyz,,
,
平面ACF即平面ACM,設(shè)其法向量為,
則即令x=1,得,
易知平面ACD的一個(gè)法向量為,
∴,
因?yàn)槎娼?/span>F﹣AC﹣D為銳二面角,
故所求余弦值為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為貫徹落實(shí)黨中央全面建設(shè)小康社會(huì)的戰(zhàn)略部署,某貧困地區(qū)的廣大黨員干部深入農(nóng)村積極開展“精準(zhǔn)扶貧”工作.經(jīng)過多年的精心幫扶,截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標(biāo)準(zhǔn),該地區(qū)僅剩部分家庭尚未實(shí)現(xiàn)小康.現(xiàn)從這些尚未實(shí)現(xiàn)小康的家庭中隨機(jī)抽取50戶,得到這50戶家庭2018年的家庭人均年純收入的頻率分布直方圖,如圖.
注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.
(1)估計(jì)該地區(qū)尚未實(shí)現(xiàn)小康的家庭2018年家庭人均年純收入的平均值;
(2)2019年7月,為估計(jì)該地能否在2020年全面實(shí)現(xiàn)小康,收集了當(dāng)?shù)刈钬毨У囊粦艏彝?/span>2019年1至6月的人均月純收入的數(shù)據(jù),作出散點(diǎn)圖如下.
根據(jù)相關(guān)性分析,發(fā)現(xiàn)其家庭人均月純收入與時(shí)間代碼之間具有較強(qiáng)的線性相關(guān)關(guān)系(記2019年1月、2月……分別為,,…,依此類推).試預(yù)測該家庭能否在2020年實(shí)現(xiàn)小康生活.
參考數(shù)據(jù):,.
參考公式:線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)求函數(shù)的極值;
(2)當(dāng)時(shí),若函數(shù)有兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2013年至201 9年我國二氧化硫的年排放量(單位:萬噸)如下表,則以下結(jié)論中錯(cuò)誤的是( )
A.二氧化硫排放量逐年下降
B.2018年二氧化硫減排效果最為顯著
C.2017年至2018年二氧化硫減排量比2013年至2016年二氧化硫減排量的總和大
D.2019年二氧化硫減排量比2018年二氧化硫減排量有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的兩條相鄰對稱軸間的距離為,把f(x)的圖象向右平移個(gè)單位得到函數(shù)g(x)的圖象,且g(x)為偶函數(shù),則f(x)的單調(diào)遞增區(qū)間為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在開展學(xué)習(xí)強(qiáng)國的活動(dòng)中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個(gè)學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計(jì)劃從兩個(gè)學(xué)習(xí)組中隨機(jī)各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.
(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);
(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:對于,恒成立;
(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】支付寶和微信支付已經(jīng)成為現(xiàn)如今最流行的電子支付方式,某市通過隨機(jī)詢問100名居民(男女居民各50名)喜歡支付寶支付還是微信支付,得到如下的列聯(lián)表:
支付寶支付 | 微信支付 | |
男 | 40 | 10 |
女 | 25 | 25 |
附表及公式:,.
P() | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
則下面結(jié)論正確的是( )
A.有以上的把握認(rèn)為“支付方式與性別有關(guān)”
B.在犯錯(cuò)誤的概率超過的前提下,認(rèn)為“支付方式與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“支付方式與性別有關(guān)”
D.有以上的把握認(rèn)為“支付方式與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,定點(diǎn) ,為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線
(1)求曲線的方程
(2)過點(diǎn)的直線與交于兩點(diǎn),已知點(diǎn),直線分別與直線交于兩點(diǎn),線段的中點(diǎn)是否在定直線上,若存在,求出該直線方程;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com