【題目】如圖,在三棱錐A-BCD中,ADBD,ACBC,∠DAB,∠BAC.三棱錐的外接球的表面積為16π,則該三棱錐的體積的最大值為(   )

A.B.C.D.

【答案】B

【解析】

設(shè)外接球的半徑為R,求得R2,進(jìn)而得到三棱錐的外接球的球心為AB的中點(diǎn),

進(jìn)而得到三棱錐的體積最大時(shí),平面ADB⊥平面ABC,即可求得三棱錐的體積,得到答案.

由題意得,設(shè)外接球的半徑為R,因?yàn)?/span>R216π,解得R2,

又由都是直角三角形,所以三棱錐的外接球的球心為AB的中點(diǎn),

AB4.由∠DAB,∠BAC,可求得AD2,BD2ACBC2,

當(dāng)三棱錐的體積最大時(shí),平面ADB⊥平面ABC,

所以三棱錐的體積的最大值為××2×2 ×2.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,某小區(qū)中有條長(zhǎng)為50,寬為6.5米的道路ABCD,在路的一側(cè)可以停放汽車(chē),已知小型汽車(chē)的停車(chē)位是一個(gè)2.5米寬,5米長(zhǎng)的矩形,GHPQ,這樣該段道路可以劃岀10個(gè)車(chē)位,隨著小區(qū)居民汽車(chē)擁有量的增加,停車(chē)難成為普遍現(xiàn)象.經(jīng)過(guò)各方協(xié)商,小區(qū)物業(yè)擬壓縮綠化,拓寬道路,改變車(chē)位方向增加停車(chē)位,如圖2,改建后的通行寬度保持不變,GAD的距離不變.

(1)綠化被壓縮的寬度BE與停車(chē)位的角度∠HPE有關(guān),為停車(chē)方便,要求,寫(xiě)出關(guān)于的函數(shù)表達(dá)式;

(2)沿用(1)的條件和記號(hào),實(shí)際施工時(shí),BE=3,問(wèn)改造后的停車(chē)位增加了多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一,為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村扶貧,此幫扶單位為了解該村貧困戶對(duì)其所提供幫扶的滿意度,隨機(jī)調(diào)查了40個(gè)貧困戶,得到貧困戶的滿意度評(píng)分如下:

貧困戶

編號(hào)

評(píng)分

貧困戶

編號(hào)

評(píng)分

貧困戶

編號(hào)

評(píng)分

貧困戶

編號(hào)

評(píng)分

1

78

11

88

21

79

31

93

2

73

12

86

22

83

32

78

3

81

13

95

23

72

33

75

4

92

14

76

24

74

34

81

5

86

15

80

25

93

35

89

6

85

16

78

26

66

36

77

7

79

17

88

27

80

37

81

8

84

18

82

28

83

38

76

9

63

19

76

29

74

39

85

10

85

20

87

30

82

40

78

用系統(tǒng)抽樣法從40名貧困戶中抽取容量為8的樣本,且在第一分段里隨機(jī)抽到的評(píng)分?jǐn)?shù)據(jù)為86

(1)請(qǐng)你列出抽到的8個(gè)樣本的評(píng)分?jǐn)?shù)據(jù);

(2)計(jì)算所抽到的8個(gè)樣本的均值和方差;

3)在(2)條件下,若貧困戶的滿意度評(píng)分在之間,則滿意度等級(jí)為A級(jí).運(yùn)用樣本估計(jì)總體的思想,現(xiàn)從(1)中抽到的8個(gè)樣本的滿意度為A級(jí)貧困戶中隨機(jī)地抽取2戶,求所抽到2戶的滿意度評(píng)分均超過(guò)85”的概率.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,,.

1)若,寫(xiě)出所有可能的值;

2)若數(shù)列是遞增數(shù)列,且、、成等差數(shù)列,求p的值;

3)若,且是遞增數(shù)列,是遞減數(shù)列,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知數(shù)列的通項(xiàng)公式:,試求最大項(xiàng)的值;

2)記,且滿足(1),若成等比數(shù)列,求p的值;

3)如果,,,且p是滿足(2)的正常數(shù),試證:對(duì)于任意自然數(shù)n,或者都滿足,,或者都滿足,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓 的長(zhǎng)軸長(zhǎng)為4,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)右焦點(diǎn)作一條不與坐標(biāo)軸平行的直線,若交橢圓兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線 的左右焦點(diǎn)分別為,過(guò)的直線分別交雙曲線左右兩支于點(diǎn)M,N.若以MN為直徑的圓經(jīng)過(guò)點(diǎn),則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解學(xué)生假期參與志愿服務(wù)活動(dòng)的情況,隨機(jī)調(diào)查了名男生,名女生,得到他們一周參與志愿服務(wù)活動(dòng)時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如右表(單位:人):

超過(guò)小時(shí)

不超過(guò)小時(shí)

1)能否有的把握認(rèn)為該校學(xué)生一周參與志愿服務(wù)活動(dòng)時(shí)間是否超過(guò)小時(shí)與性別有關(guān)?

(2)以這名學(xué)生參與志愿服務(wù)活動(dòng)時(shí)間超過(guò)小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)抽查名學(xué)生,試估計(jì)這名學(xué)生中一周參與志愿服務(wù)活動(dòng)時(shí)間超過(guò)小時(shí)的人數(shù).

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù)

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)設(shè)函數(shù),若的唯一極值點(diǎn),求

查看答案和解析>>

同步練習(xí)冊(cè)答案