已知在各項均不為零的數(shù)列{an}中,a1=1,2anan+1+an+1-an=0(n∈N*),
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=anan+1,求數(shù)列{bn}的前n項和Sn

解:(1)由2anan+1+an+1-an=0得(3分)
∴數(shù)列是首項為,公差為2的等差數(shù)列
(7分)
(2)∵
∴{bn}的前n項和為:=(13分)
分析:(1)由2anan+1+an+1-an=0,兩邊同除以anan+1,得,從而可知數(shù)列是首項為,公差為2的等差數(shù)列,進而可求數(shù)列{an}的通項公式;
(2)根據(jù)bn=anan+1,結合(1),將通項裂項,進而可求可.
點評:本題以數(shù)列遞推式為載體,考查構造法證明等差數(shù)列,考查數(shù)列的通項,考查裂項法求和.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:①不等式f(x)≤0的解集有且只有一個元素;②在定義域內存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設數(shù)列{an}的前n項和Sn=f(n).
(1)求函數(shù)f(x)的表達式;
(2)求數(shù)列{an}的通項公式;
(3)在各項均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個數(shù)列{cn}一對變號項.令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號項的對數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax+a(a∈R) 同時滿足:①函數(shù)f(x)有且只有一個零點;②在定義域內存在0<x1<x2,使不等式f(x1)>f(x2)成立.設數(shù)列{an}的前n項和Sn=f(n) (n∈N*
(1)求f(x)和an;
(2)在各項均不為零的數(shù)列{cn}中,所有滿足ci•ci+1<0的整數(shù)i的個數(shù)稱為數(shù)列{cn}的變號數(shù).令cn=1-
4an
,求數(shù)列{cn}的變號數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在各項均不為零的數(shù)列{an}中,a1=1,2anan+1+an+1-an=0(n∈N*),
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=anan+1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶市西南師大附中高三(上)第三次月考暨期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知在各項均不為零的數(shù)列{an}中,a1=1,2anan+1+an+1-an=0(n∈N*),
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=anan+1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案