【題目】給出以下命題:
(1)若:;:,則為真,為假,為真
(2)“”是“曲線表示橢圓”的充要條件
(3)命題“若,則”的否命題為:“若,則”
(4)如果將一組數(shù)據(jù)中的每一個(gè)數(shù)都加上同一個(gè)非零常數(shù),那么這組數(shù)據(jù)的平均數(shù)和方差都改變;
則正確命題有( )個(gè)
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,銳角和鈍角的終邊分別與單位圓交于兩點(diǎn).
(Ⅰ)如果點(diǎn)縱坐標(biāo)分別為,求;
(Ⅱ)若為軸上異于的點(diǎn),且,求點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的直線的方程:
(1)直線經(jīng)過點(diǎn),并且它的傾斜角等于直線的傾斜角的2倍,求直線的方程;
(2)直線過點(diǎn),并且在軸上的截距是軸上截距的,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的通項(xiàng)公式為 ,求數(shù)列{anbn}的前n項(xiàng)的和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,⊥平面,底面為正方形,為的中點(diǎn),.
(1)求證:;
(2)邊上是否存在一點(diǎn),使得//平面?若存在,求的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx-)+1(A>0, ω>0)與ω=cosωx的部分圖象如圖所示。
(1)求A,a,b的值及函數(shù)f(x)的遞增區(qū)間;
(2)若函數(shù)y= g(x-m)(m>)與y= f(x)+ f(x-)的圖象的對稱軸完全相同,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)兩定點(diǎn)和,動點(diǎn),滿足,動點(diǎn)的軌跡為曲線,給出下列五個(gè)命題:
①存在,使曲線過坐標(biāo)原點(diǎn);
②對于任意,曲線與軸有三個(gè)交點(diǎn);
③曲線關(guān)于軸對稱,但不關(guān)于軸對稱;
④若三點(diǎn)不共線,則周長最小值為;
⑤曲線上與不共線的任意一點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)為,則四邊形的面積不大于.
其中真命題的序號是__________(填上所有正確命題的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com