【題目】若U={1,2,3,4},M={1,2},N={2,3},則U(M∪N)=( )
A.{1,2,3}
B.{2}
C.{1,2,3}
D.{4}

【答案】D
【解析】解:M∪N={1,2}∪{2,3}={1,2,3},∴CU(M∪N)=[4},
故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解交、并、補(bǔ)集的混合運(yùn)算(求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合U={2,4,5,7,8},A={4,8},則UA=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x≥1},B={x|x>2a+1},若A∩(RB)=,則實(shí)數(shù)a的取值范圍是(
A.(1,+∞)
B.(0,+∞)
C.(﹣∞,1)
D.(﹣∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)是R上的減函數(shù),f(1)=0,則不等式f(x﹣1)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a=0.40.5 , b=0.50.5 , c=log0.22,則a,b,c的從大到小順序是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=log0.2(x2﹣2x﹣3)的單調(diào)遞減區(qū)間為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合A={x∈N|-1<x<4}的真子集個(gè)數(shù)為( )
A.7
B.8
C.15
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f (x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),y=f (x)是減函數(shù),若|x1|<|x2|,則(
A.f (x1)﹣f (x2)<0
B.f (x1)﹣f (x2)>0
C.f (x1)+f (x2)<0
D.f (x1)+f (x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)求證f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a﹣1)+2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案