對(duì)于任意實(shí)數(shù)x,不等式(a-2)x2-2(a-2)x-4<0恒成立,則實(shí)數(shù)a取值范圍( 。
分析:分類討論,利用判別式,即可得到結(jié)論.
解答:解:a-2=0,即a=2時(shí),-4<0,恒成立;
a-2≠0時(shí),
a-2<0
4(a-2)2+16(a-2)<0
,解得-2<a<2,
∴-2<a≤2
故選D.
點(diǎn)評(píng):本題考查不等式恒成立問題,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義域?yàn)镽且同時(shí)滿足:①f(x)圖象左移1個(gè)單位后所得函數(shù)為偶函數(shù);②對(duì)于任意大于1的不等實(shí)數(shù)a,b,總有
f(a)-f(b)
a-b
>0
成立.
(1)f(x)的圖象是否有對(duì)稱軸?如果有,寫出對(duì)稱軸方程.并說(shuō)明在區(qū)間(-∞,1)上f(x)的單調(diào)性;
(2)設(shè)g(x)=
1
f(x)
+
1
2-x
,如果f(0)=1,判斷g(x)=0是否有負(fù)實(shí)根并說(shuō)明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比較f(-x1)與f(-x2)的大小并簡(jiǎn)述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)F(x)=x3f(x)(x∈R)是[0,+∞)上的增函數(shù),又f(x)是偶函數(shù),那么對(duì)于任意實(shí)數(shù)a,下列不等關(guān)系成立的是


  1. A.
    F(a2-2a+2)≥F(2)
  2. B.
    F(a2-2a+2)≤F(2)
  3. C.
    F(a2-2a+2)≥F(1)
  4. D.
    F(a2-2a+2)≤F(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鹽城市東臺(tái)市安豐中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)定義域?yàn)镽且同時(shí)滿足:①f(x)圖象左移1個(gè)單位后所得函數(shù)為偶函數(shù);②對(duì)于任意大于1的不等實(shí)數(shù)a,b,總有成立.
(1)f(x)的圖象是否有對(duì)稱軸?如果有,寫出對(duì)稱軸方程.并說(shuō)明在區(qū)間(-∞,1)上f(x)的單調(diào)性;
(2)設(shè),如果f(0)=1,判斷g(x)=0是否有負(fù)實(shí)根并說(shuō)明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比較f(-x1)與f(-x2)的大小并簡(jiǎn)述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

同步練習(xí)冊(cè)答案