求數(shù)列1,3x,5x2,…,(2n-1)xn-1前n項(xiàng)的和.
【答案】
分析:設(shè)數(shù)列的前n項(xiàng)的和為s
n,等式兩邊都乘以x得xs
n,用xs
n-s
n得一新數(shù)列,求出之和轉(zhuǎn)化即可求出s
n.
解答:解:數(shù)列的前n項(xiàng)和設(shè)s
n=1+3x+5x
2+…+(2n-1)x
n-1①
(1)當(dāng)x=0時(shí),s
n=1;
(2)當(dāng)x=1時(shí),s
n=1+3+5+…+(2n-1)=n
2,
(3)當(dāng)x≠1,x≠0時(shí),給等式兩邊都乘以x得:x•s
n=x+3x
2+5x
3+…+(2n-3)x
n-1+(2n-1)x
n②
得:①-②得:(1-x)s
n=1+2x+2x
2+…+2x
n-1-(2n-1)x
n=1-(2n-1)x
n+2(x+x
2+x
3+…+x
n-1)=1-(2n-1)x
n+
則s
n=
.
綜上當(dāng)x=0時(shí),s
n=1;當(dāng)x=1時(shí),s
n=n
2;當(dāng)x≠1時(shí),s
n=
.
點(diǎn)評(píng):考查學(xué)生應(yīng)用數(shù)列遞推式來(lái)求和的能力.以及等比數(shù)列求和的方法.