設(shè)函數(shù),其中,區(qū)間.
(Ⅰ)求的長度(注:區(qū)間的長度定義為;
(Ⅱ)給定常數(shù),當(dāng)時,求長度的最小值.
(Ⅰ)(Ⅱ)
【解析】(1)令
解得
的長度
(2) 則
由 (1)
,令,得,由于
故關(guān)于在上單調(diào)遞增,在上單調(diào)遞減.,必定在或處取得
因此當(dāng)時,在區(qū)間上取得最小值.
第(1)題求解一元二次不等式確定區(qū)間的取值范圍,根據(jù)題意能夠求出的長度,簡單題;第(2)題要能理解其實就是求關(guān)于在給定區(qū)間內(nèi)的最小值,通過求導(dǎo)就能確定最小值是當(dāng)取何值,但此題易錯點在于需要比較在與處的大小,利用作差或作商都可以解決,出題思路比較新穎,容易迷惑,但只要能夠理解題意,基本能夠求解出來.
【考點定位】考查二次不等式的求解,以及導(dǎo)數(shù)的計算和應(yīng)用,并考查分類討論思想和綜合運用數(shù)學(xué)知識解決問題的能力.
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù),其中,區(qū)間.
(Ⅰ)求的長度(注:區(qū)間的長度定義為;
(Ⅱ)給定常數(shù),當(dāng)時,求長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長度(注:區(qū)間的長度定義為);
(Ⅱ)給定常數(shù),當(dāng)時,求長度的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試理科數(shù)學(xué)(安徽卷解析版) 題型:解答題
設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長度(注:區(qū)間的長度定義為);
(Ⅱ)給定常數(shù),當(dāng)時,求長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù),其中,區(qū)間.
(1)求區(qū)間的長度;(區(qū)間的長度定義為)
(2)給定常數(shù),當(dāng)時,求區(qū)間長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com