7.已知復(fù)數(shù)z=(3-2i)2+2i(i為虛數(shù)單位),則z虛部為-10.

分析 利用復(fù)數(shù)的運算法則、虛部的定義即可得出.

解答 解:z=(3-2i)2+2i=9-4-12i+2i=5-10i,則z虛部=-10.
故答案為:-10.

點評 本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB=38米,從點A發(fā)出的光線經(jīng)水平放置于C處的平面鏡(大小忽略不計)反射后過點B,已知AC=10米,BC=42米.
(1)求光線AC的入射角θ(入射光線AC與法線CK的夾角)的大小;
(2)求點B相對于平面鏡的垂直距離BE與水平距離CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.隨著節(jié)假日外出旅游人數(shù)增多,倡導(dǎo)文明旅游的同時,生活垃圾處理也面臨新的挑戰(zhàn),某海濱城市沿海有A,B,C三個旅游景點,在岸邊BC兩地的中點處設(shè)有一個垃圾回收站點O(如圖),A,B兩地相距10km,從回收站O觀望A地和B地所成的視角為60°,且${\overrightarrow{OA}^2}+{\overrightarrow{OB}^2}≥4\overrightarrow{OA}•\overrightarrow{OB}$,設(shè)AC=xkm;
(1)用x分別表示${\overrightarrow{OA}^2}+{\overrightarrow{OB}^2}$和$\overrightarrow{OA}•\overrightarrow{OB}$,并求出x的取值范圍;
(2)某一時刻太陽與A,C三點在同一直線,此時B地到直線AC的距離為BD,求BD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.銳角△ABC的內(nèi)角A,B,C的對邊分別別為a,b,c,且2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c=2,求△ABC的周長取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ為參數(shù),r為大于零的常數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2-8ρsinθ+15=0.
(Ⅰ)若曲線C1與C2有公共點,求r的取值范圍;
(Ⅱ)若r=1,過曲線上C1任意一點P作曲線C2的切線,切于點Q,求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)集合M={y|y=|cos2x-sin2x|,x∈R},$N=\{x||\frac{2x}{{1-\sqrt{3}i}}|<1,i$為虛數(shù)單位,x∈R},則M∩N為{x|0≤x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.端午節(jié)放假,甲回老家過節(jié)的概率為$\frac{1}{3}$,乙、丙回老家過節(jié)的概率分別為$\frac{1}{4}$,$\frac{1}{5}$.假定三人的行動相互之間沒有影響,那么這段時間內(nèi)至少1人回老家過節(jié)的概率為(  )
A.$\frac{59}{60}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{1}{60}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線l過點(2,1),且它的傾斜角是直線y=x+1的傾斜角的2倍,則直線l的方程為( 。
A.y=2x-3B.x=2C.y=1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{a+lnx}{x}$,若曲線f(x)在點(e,f(e))處的切線與直線e2x-y+e=0垂直(其中e為自然對數(shù)的底數(shù))
(1)若函數(shù)f(x)在(m-1,m+1)上存在極值,求實數(shù)m的取值范圍.
(2)求證:當(dāng)x>1時,$f(x)(x{e^x}+1)>\frac{{2({e^x}+{e^{x-1}})}}{x+1}$.

查看答案和解析>>

同步練習(xí)冊答案